The Sciences:
Chemistry:
Silanes
By Prof Dr Dr Randolph Riemschneider Central Institute of Chemistry, Universidade Federal de Santa Maria (UFSM),
Santa Maria, Rio Grande do Sul, Brazil Editor’s Note: BWW
Society Life Fellow Prof R Riemschneider pointed to Silanes as a possible
energy source already in his essay “Alternatives to Atomenergy and Oil” (1).
Here you will find a more detailed look on this subject: Plate 1. In the order of the quantity of deposits, the crust of the earth
contains the elements oxygen, silicon, aluminium, iron and calcium
(O-Si-Al-Fe-Ca or, as a German mnemonic, Sa-Si-Al-Ei-Ca). Carbon, the basic element of organic chemistry and the foundation
of our "hydrocarbon age"
which received its name from our dependence on oil lags far behind, while silicon
in the form of silica (rock, sand) is
among the first. In view of these facts, it is obvious to consider "hydrosilicons", i.e. silicon
hydrogen compounds, i.e. silanes,
silicon compounds corresponding to hydrocarbons, as an alternative energy
source, especially when taking into account that two reactions generating energy may occur during the
"combustion" of silanes. Plate 1 shows these reactions on the example
of octasilane which corresponds to octane, Si8H18, and on
the silane Si9H20. The components air oxygen and air
nitrogen are available in unlimited quantities, as are rocks and sand (2a,b,c). The author considers silanes, SixH2x+2 (x ≥
7) to be a possible alternative energy source (1,2c) parallel to alkanes, CxH2x+2
, especially because two
energy-generating reactions occur, i.e. not only is the hydrogen of the
silanes burnt, but the Si formed according to Gl 1 and 4 is also reacted in the
heat together with added Si to form Si3N4 in a reaction
that also generates energy. Sum equations 3 and 6. They however, show only the
side of recovery of energy by
"combustion" of silanes and silicon, the preparation of which is energy-consuming. A final energy balance can only be made when the technologies for
the reactions according to Gl.3 and Gl.6 as well as for preparing the silanes
including the process of pyrolysis have been developed further. Ready for
industrial production and known are only the processes for producing silicon
and magnesium silicide (2a). Plate 1: Energy from Silanes (2a) The two energy-generating reactions of a
complete "combustion" of silanes with the addition of O2,
N2 and Si, formulated for octasilanes (Gl 1-3) and nonasilanes (Gl
4-6): Gl 1: Si8H18 +
4,5 O2 9 H2O + 8
Si + E + Gl 2: (8 + 19) Si + 18
N2 9 Si3N4
+ E ______________________________________________________________________________ Gl 3:
Si8H18 +
4,5 O2 + 19 Si + 18 N2 9
H2O + 9 Si3N4 + 2 E Gl 4: Si9H20 + 5
O2 10
H2O + 9 Si + E + Gl 5: (9 + 21) Si
+ 20 N2 10
Si3N4
+ E _______________________________________________________________________________ Gl 6:
Si9H20 + 5 O2 + 21 Si + 20 N2 10
H2O + 10 Si3N4 + 2 E The author has been conducting research on silanes since 1941. While
studying chemistry at In 1943, the question of production of higher silanes and whether these are stable, self-igniting and
explosive like the known lower
representatives of this class of compounds was discussed at the Military
Research Institute for Explosives in Since the methods of STOCK and FEHER were unsuitable for recovering higher
silanes (Si > 5) in large amounts and experiments with other methods of
silane preparation known at the time were unsatisfactory (6), the author opened
new routes for the preparation of higher silanes during the 1950s and 60s
(7a,b), starting with the experience from pyrolysis experiments conducted
during his work at the hydrogenation plant and later (12a-g). Given the sensitivity of lower silanes to oxygen (2b, 3, 6), catalytic pyrolysis of lower silanes to
higher ones in vacuo was one obvious alternative. By catalytic pyrolysis at
temperatures between 350 and 450°C we obtained the following main products: "Pentasilanes" (420° C) from
"Trisilanes" "Heptasilanes" (400° C) from
"Tetrasilanes" "Octasilanes" (350° C) from
"Pentasilanes" (7a,b, 9d). Dr. H. Herzel from the Berlin Institute for Material Testing subjected
the silanes to a chromatographic examination [7b, Table 1 in (9d)]. As a result of these experiments, it was found for the first time that,
contrary to lower silanes, higher silanes, i.e. silanes having an
Si number of 7 and higher, are stable and no longer self-igniting (if free of
corresponding silanes) and need therefore not be classified as explosives (7b,
9a,b). In a letter dated November 1, 1971 (Plate 2), the author submitted seven
laboratory reports and manuscripts on silanes to the patent department of
HOECHST, offering to make them available for a patent application.
Unfortunately, his offer was not accepted. The oil crisis came two years later! At the time (1962 and 1971, respectively) however, HOECHST asked to
refrain from publishing these important results. From 1950 onwards, the author worked with HOECHST for 22 years,
especially in the field of synthetic insecticides, cf also http://bwwsociety.org/journal/html//pestcontrol.htm 2005, copied in (2c): PROJ. III 5.3 Unfortunately, the U.S. Commission that had invited the author for a
discussion in Berlin-Tempelhof as a result of the 1973 oil crisis did not show any interest in this alternative
energy production (Plate 3a,b and 4): As a result of several publications and lectures on
petrochemical topics [e.g. (8), cited in (2c): PROJ III 1, Plate 3], American
scientists and technicians had contacted the author in 1973 on behalf of the
U.S. government to discuss his work in a pitch high-pressure hydrogenation
factory during the 2nd World War. [Copy of the letter with
translation in Plate 3a,b plus Appendix: Plate 4]. During this interview, the
author had pointed out that the technology used at the time was outdated and
had never been evaluated under economical aspects. On the occasion of this
meeting in Berlin-Tempelhof he addressed the topic of SILANES as energy sources
based on comprehensive experimental reports and especially pointed out the fact
that higher silanes (Si ≥ 7)
are stable and no longer self-igniting: Plate 4: Appendix to the letter in Plate
3a,b. During a slide presentation, Plate 1 was shown and explained. As already
indicated above, the desired cooperation in this field regrettably did not
materialise. In this presentation Plate 1 has been presented for the first time and
lateron also in letters to HOECHST [(7b, 9a,d) Plate 2] and to the US
Commission. In order to warn against too optimistic expectations in this
presentation and in later lectures it had been pointed out that a complete
energy balance can only be made when the technologies for preparing all
starting materials and for the use of silanes (Gl. 3 and 6) in engines has been
developed further. The author first addressed the issue of "Silanes
as Fuels" in 1971 (2a) and again in the "Addendum to the Oil Crisis
1973“ (2c): Plate 4: “Reference
here is to the equations for the „combustion” of octa- and nonasilane with oxygen a n d for Si
(formed and added to) with nitrogen: Pl.1. It may well be possible to use "silanes mixed
with silicon" as a propellant for rockets [eg as a substitute for kerosine
and hydrazine], as the specific weight of silanes with a Si number 7 and above
is higher that of the corresponding hydrocarbons and thus saves space. A
technology for using both of the - simultaneous - "combustion" processes of silanes with oxygen and
nitrogen for rocket propulsion and "petrol" engines has yet to be
developed. It has been known for quite some time that metallic
silicon releases considerable quantities of energy when combusting with
nitrogen at higher temperatures (9c) - but no consequences have yet been drawn
from this fact. We established the heat of combustion from Si8H18
and brought it into relation to C8H18 (9b)”. According to the author’s opinion priority should have
been given to propulsion experiments, but the involved Brazilian colleagues and
myself were not prepared enough for such experiments; so only orientational
trials could be done (11d). Here are a few details about practical experiments with "petrol silane
oil mixtures" in internal combustion
engines and later in propellants for rockets, derived from the cited
sources and (11b,c, and d). With the aid of CONSULTING DEVELOPMENT ENGINEERING, S. Paulo and Rio de
Janeiro, - headed by Dr. M. M. Faria - ,
and of BRASTONE, Ltd., Curitiba, PR, -
headed by Dr. F. R. Pesserl -, experiments on the behaviour of mixtures
of petrol and silanes having an Si number of 7 to 9 in internal combustion engines were conducted from 1982 to 1985 (11b). The
necessary quantities of silane had been prepared at the technical department of
the Chemical Central Institute of UFSM, in Rocket propulsion experiments
with mixtures of "silanes plus silicon addition in water" plus X by
"combustion in O2, N2“ were also conducted under the
direction of Dres. M. M. Faria and F. R. Pesserl (CONSULTING DEVELOPMENT ENGINEERING
and BRASTONE) as well as scientists from UFSM 1984-89 in These experiments as well as those of (11b) remained unfinished:
breaking off because the mentioned Brazilian colleagues had died in the
beginning of the 90ies (firms were liquidated without succesors). Unfortunately, the author was unable to conduct similar experiments at
the Free University in Berlin, because his lab, which belonged to the Free
University, at an explosives testing site in Berlin-Grunewald (initially
financed by the German Research Community), had to be abandoned in 1968/69
because of the student rebellion and the new University Law resulting in the
so-called "democratisation" of the Free University. At the end of these observations, the author wishes to point out the
significance of the silane studies started in the 1970s by P. Plichta and
associates (13). The FEHER student, Dr. Plichta, is considered a fellow
campaigner advocating the production and use of higher silanes as fuel.
Unfortunately, P. Plichta and associates were not successful either in
achieving a breakthrough of silanes as fuel in spite of their intensive efforts.
Their patent application DE 2 139 155 of 1971, published in 1973, was not
opposed by the author at the time, as agreed with the head of the patent
department of Farbwerke HOECHST, Dr. Beer. The comprehensive own experimental
data on catalytic pyrolysis which even exceeded the information in that patent
specification provided sufficient substance for a subsequent patent application
should HOECHST so wish. The author met Prof Feher in the 60ies during a Chemical Congress and
presented to him Plate 1 on a confidential basis in order to establish some
form of co-operation but Prof Feher declined.
In the following: Plates 2 to 7: Plate
2: Copy of letter from Nov 01
1971, written to the patent department of HOECHST Plate 3a: Copy
of letter written to the US Commission Plate 3b: Translation
of 3a Plate 4: Enclosure
to 3a,b Plate 5: Photocopy
of publication “Adducts from HSiCl3 and unsaturated compounds” Bull
Inst of Plate 6: Photocopy
of publication “Adducts from HGeCl3 and unsaturated compounds” Bull
Inst of Plate 7: Photocopy
of patent specification for public scrutiny "Method
for preparing new organoselenium chlorine compounds";
PROJ XVII in (2c) Plate 2: Copy of letter from Nov 01 1971, written to the patent department of
HOECHST[1] A
b s c h r i f t
Prof.Dr.R.Riemschneider
FU Berlin An die
Patentabteilung Bln,
1.11.1971 Farbwerke
HOECHST Hoechst Betr: Silane –
Prüfung der Unterlagen auf Patentfähigkeit (unveröffentlichte Berichte und
Manuskripte: 7 Anlagen) Sehr geehrte
Herren: Unter Hinweis
auf die bei meinem letzten Besuch in Hoechst gemachten Ausführungen über
“SILANE als Energieträger und Herstellung höherer Silane“ übersende ich heute
folgende Unterlagen aus den Jahren 1959 bis 1971 (die ersten drei Laborberichte sind
Ihnen bereits 1959 und 1962 zugesandt worden. Sie baten
damals, zunächst von einer Veröffentlichung abzusehen): Riemschneider, Sato, „Synthese von Silanen Si 2-4 u.höher – nach FEHER
u.a.“, Lab report 1959, 14 S. (1.10.59); Riemschneider, Otto, „Synthese von
Silanen durch Pyrolyse“ Lab report Mai 1960, 6 S., 11.10.60); Riemschneider,
Herzel, „Continuing to pyrolize lower silanes (Si 2-4) to higher ones (Si more
than 4) in high vaccum at 350-450° C – “Examining the silane-fractions by
chromatography”, Lab rep.1962, 17p (12.12.1962). –
Riemschneider, Herzel, Traversa, “Hepta- und Oktasilane, stabil und
nicht selbstentzündlich“, Ms Jan 1970, 8 S.; Riemschneider, Newton, „Vergleich
der Verbrennungsenergien von Si7H16 und Si8H18
mit den entsprechenden Paraffinen, Ms Dez.’70, 6 S.; Riemschneider, Herzel,
„Bildungswärme von Si3N4 – Bedeutung der Reaktion von N2
mit Si für die Treibstoff-Chemie“ Ms
Febr.1971; Riemschneider, „Silane als Treibstoffe“, Vortrag in LIONS-Club Berlin, Mai 1971. Ich bitte jetzt,
wie auch seinerzeit in meinem Schreiben vom 12.12.1962, um Prüfung der
Unterlagen auf Patentfähigkeit. Die Silane dürften vor allem als
Raketentreibstoffe (in Mischung mit Si in Wasser) von Interesse sein. Für
Motoren wird es noch Entwicklungs-arbeit bedürfen.- Für die
Schädlingsbekämpfung haben nur die
organischen Silizium-verbindungen Interesse, die von uns durch Addition von
HSiCl3 an ungesättigte Verbb. hergestellt worden sind; vgl das Ihnen
seinerzeit zugesandte Manuskript und Publikation: „Addukte von HSiCl3 an
ungesättigte Verbb.“ Mitt Physiolog.chem.Institut Bln, Dez.1949. Mit besten
Empfehlungen Plate 3a: Copy of letter
written to the US Commission Plate 3b: Translation of letter (Plate 3a) USA
Commission
Prof Dr Dr R Riemschneider Platz
der Luftbrücke
Free University of Berlin Berlin-Tempelhof Ref: Oil crisis - discussion by invitation Dear Sirs, Firstly, I thank you for the invitation to talks about
my experience in the field of petrochemistry, in particular my work in a hydrogenation
plant for synthesizing fuels. We had hydrogenated pitch and tar oil distillates
below 700 at H2 at 500°C to molybdenum sulphide: RUHRÖL GmbH, I did, however, have to emphasize right at the start
of our talks that the technology of the time is considered obsolete
today. Cost was unimportant then. I took the opportunity to report to you on my silane
research. Higher silanes are easy to handle and stable (Si over 7/8). I refer
to the APPENDIX which contains facts. I would be pleased if it came to cooperation in this
promising field. Reserves of SiO2, N2 and O2 are
immeasurable. There are unfortunately no opportunities at the FUB
since the university reform – narrowly focused working groups have been formed.
It does not feel much like university any more. I also referred to the immeasurable heat in the
earth's interior and submitted my article "THE EARTH ITSELF IS THE EARTH'S
BIGGEST POWER PLANT" (1950) to you. My respects and thanks for your interest Yours faithfully (signed) 1973 R Riemschneider _________ enclosures Plate 4: Enclosure to Plates 3 a, b Plate 5: Photocopy of publication
"Adducts from HSiCl3 and unsaturated compounds", Bull Inst
of Annotation to
quote (1) of photocopy above, as Plate 6 in the following. In continuation to HSiCl3 and HGeCl3
also SeCl4 has been converted with unsatureated compounds: Plate 7 Plate 6: continued on next page. Plate 7: Photocopy of patent
specification for public scrutiny
"Method for preparing new organoselenium chlorine compounds";
PROJ XVII. Continued on next
page. The experiments belonging to this essay were
carried out in:
1980, Silane oils (Si ≥ 7) were prepared in large scale by
catalytic pyrolysis the first time in Brasil in batches over 10 kg . References : (1) R. Riemschneider: Alternatives to Atomic
Energy and Oil http://www.bwwsociety.org/journal/html/alternatives.htm Nov Issue 2006 (2a) R
Riemschneider "Silanes as fuels" („Silane als Treibstoffe“) Lecture given in Lions Club, In this lecture plate 1 was made public for the first time, and then in
the letters to HOECHST and the US-Kommision (Plate 2-4)[3]. In this and
later lectures the author warned against too much optimism. And pointed out
that a complete energy balance could be calculated only after further development
of the technology of all starting materials and the production of silanes
(Plate 1: Gl.3 and 6) and their application in combustion engines and rockets. (2b) R
Riemschneider Bibliography of silicon hydrides: silanes (Siliziumwasserstoffe) Report 1957, 22 p (unpublished) (2c) R. Riemschneider “Re-Reading – 66
years Chemistry”, PROJ III 4,6:
Silanes, PROJ III 2: Addendum to
oil-crisis 1973 (in Vorbereitung) (3) R.Riemschneider Converting
magnesium silicide, introduced into phosphoric acid to silanes, while excluding
atmospheric oxygen. (Umsetzung von
Magnesiumsilizid zu Silanen unter O2-Ausschluß) Conducted in
Dept of Anorg Chem, Inst of Chem, Univ of Leipzig (Prof Dr Kautsky) Lab
report June 1941, 8 p (4) R. Riemschneider Trichlorosilane, HSiCl3
(Trichlorsilan) as reference preparation in the frame of deepening study of
organic chemistry at University of Leipzig, task set by Profs Drs C Weygand and
H Bredereck Lap report May 1941; cf also (5) (5a) R.
Riemschneider Adducts from HSiCl3
and unsaturated compounds Mitt. Physiolog.chem.Inst., Berlin, Dec 1949;
see Plate 5 (5b) H Renner, R Riemschneider, H Horak Continuation of experiments conducted in
1948 - 49 [(5a) broken off due to changing university] to add HSiCl3
to unsaturated compounds, incl alkynes (Fortsetzung
der 1948/49 durchgeführten [wegen
Universitätswechsel abgebrochenen] Versuche der Addition von HSiCl3 an ungesättigte
Verbindungen, einschl. Alkine) Lab report Oct 58, 10 p (secreted)[4]) (6a) R Riemschneider Synthesis of silanes4)
Report 1943 im Heeresforschungsinstitut für Explosivstoffe, Prag (6b) R
Riemschneider, H Sato Synthesis of silanes
with Si no 2-4 and
higher - according to STOCK-FEHER and other methods (Synthese von Silanen) Lab report 1959, 14 p (secreted) Regarding polysilanes, (SiH2)x , see (14) (7a) R.Riemschneider, H.D.Otto Synthesizing silanes by
pyrolysis (Synthese von
Silanen durch Pyrolyse) Lab report May 60, 9 p; (secreted) Several pyrolysis apparatuses were developed to thermally cyclize unsaturated
hydrocarbons (12a-g) in 1943 - 60; a modified version for the range 300° - 450°
C and high vacuum, described in 1959, was used
here; cf (2c) there PROJ III 4.6; cf also (12b,f,g) (7b) R Riemschneider, F Herzel Continuing to pyrolize
lower silanes (Si 2 - 4) to (Si >4) ones in
high vacuum at 350 - 450° C - examining the silane fractions by chromatography
(Si >4) (Pyrolyse niederer Silane) Lab reports 1962/65, 17 p - patent application discussed with Dr Beer of
HOECHST's Patent Dept, but deferred; details in (2c) there PROJ III 4.6 Silanes,
Si ≥ 7, are oily-liquid, stable and not self-ignite (if Si6H14-free)
(8) R Riemschneider Lubricating oil-like
hydrocarbons from products of pitch high-pressure hydrogenation plant (Schmierölartige
Kohlenwasserstoffe aus Produkten eines Pech-Hochdruckhydrierwerkes) Published in Angew Chemie B 19, 92 - 93 (1947); author's doctoral
thesis, (9a) R
Riemschneider, F Herzel, R Traversa Hepta- and octasilanes -
stable and not selfignite (as for example SiH4
to Si6H12) (Hepta-
und Oktosilane, stabil u. nicht selbstentzündlich) Ms Jan 70, 8 p (secreted)1; cf (2c) PROJ III 4.6 n-heptasilane boils at 225–27°C (density 0.86) n-octasilane boils at approx 120°C higher than n-octane (density 0.88). Data taken from lab-reports Mss 1960/62
(7a,b); cf Table 1 (9d) (9b) R Riemschneider, P Comparison of Si7H16 and
Si8H18 combustion energy with the corresponding paraffins
- silanes have higher values; cf (2c) PROJ III 4.6 (Vergleich der Verbrennungsenergien von Si7H16
und Si8H18 mit den
entsprechenden Paraffinen - Silane
besitzen höhere Werte) Ms Dec 70, 6 p
(secreted in the narrow interest of FARBWERKE HOECHST); cf. also Plate 2 (9c) R
Riemschneider, F Herzel Formation heat of Si3N4 - significance of reaction of N2
with Si for fuel chemistry (Bildungswärme
von Si3N4 - Bedeutung der Reaktion von N2 mit
Si für die Treibstoff-Chemie) Ms
Feb 71 (secreted); cf. also Plate 2
(9d) R. Riemschneider „Higher Silanes- Preparation and Analysis“, round-table lecture, given in Feb 1971 in the Crop protetction department of
FARBWERKE HOECHST in Hoechst, chair: Director Dr.F.Scherer and Dr. Beer, Patent
department HOECHST. Content of lecture: Presentation of Plate 1 and prescription of the
experiments in 6 tables; here as an example Table 1. See also Plate 2. Table
1: Composition of
a heptasilanes/octasilanes fraction, received by pyrolysis of a mixture of
tetrasilanes and pentasilanes (gaschromatography): Main fraction (100%) (several times refractionated): n-Si7H16 (26%),
iso-Si7H16 (45%),
n-Si8H18 (10%), iso-Si7H16 (19%) First runnings
(100%): Si4H10
+ Si5H12 (31%) Si6H14 (40%);
residue: Si9H20 and higher (8%); loss (10a) R. Riemschneider mit A. Küchenmeister,
W. Stuck, E. Schölzel
Über Addukte aus HGeCl3 und
ungesättigten Verbindungen Mitt des
Physiologisch-chemischen Instituts Berlin, Dez 1949, 3 pages, pp 1 and 2 in Plate 6; cf also (10c). The reaction products of HGeCl3 with unsaturated compounds
synthesised here and later did not yield new insecticides (first objective),
but, when unsaturated nitriles were used, resulted in water-soluble, Cl-free germano-organic compounds (second objective)
cf. in (2c) PROJ XVI. (10b) R.
Riemschneider (Erfinder), O. Matter (Anmelder) Verfahren zur Herstellung von Addukten aus HGeCl3
und ungesättigten Verbindungen aller Art Schweizer
Patentanmeldung vom 5.2.1950, basierend auf den Ergebnissen, die in einer der
Mitteilungen des Physiologisch-chemischen Instituts der Universität Berlin
niedergelegt sind (verfaßt im Dezember 1949, 3 S., einschließlich 4 Tafeln); vgl. auch (10a). (10c) R.
Riemschneider, K. Menge, P. Klang Germanium-organische
Verbindungen: Über die Umsetzung von Trichlorgerman, HGeCl3, mit
ungesättigten Verbindungen, Z.Naturforschg.
11b, 115-116 (1956)[5] Aus
patentrechtlichen Gründen sind in dieser Mitteilung – im Gegensatz zu (10a,b) -
die Hauptversuche mit Acrylnitril und
Acrylsäure nicht erwähnt worden. Hier lag das eigentliche Versuchsziel:
Synthese wasserlöslicher Ge-organischer Verbindungen für biochemische,
pharmakologische und toxikologische Untersuchungen. (11a) R.Riemschneider, W. Pollak Synthesizing higher
silanes by catalytic pyrolysis in large scale experiments (Synthese höherer Silane durch
Pyrolyse im Technikum) Central Institute of Chemistry, UFSM, Report July 1980, 12 p. Batches of 10 kg silane oils (Si ≥ 7) . The composititon of the
highly active catalysator is secreted. Several repetitions of pyrolysis are
possible to increase the yield in higher silanes. Apparatus described here. (11b) R.Riemschneider, M.M.Faria, F.R.Pesserl Über das Verhalten von Gemischen aus Benzin und
Silanen der Si-Zahl 7 bis 9 in
Verbrennungsmotoren Laborberichte
1982 bis 85 nach Versuchen der CONSULTING DEVELOPMENT ENGINEERING
und von BRASTONE, S.Paulo, Rio de Janeiro und Curitiba, PR, Brasil Es wurden
Benzin-Silanöl-Gemische untersucht, enthaltend die Komponenten im Verhältnis
9:1, 8:1 und 7:1. Die Motoren nahmen auch bei längerer Laufzeit
keinen Schaden. Erste Versuche entstehendes Si auszufiltern. (11c) R.Riemschneider “Silane as fuels“ (“Silane alsTreibstoffe”) Lecture, given in Aug.1980, Colloquium Central Inst.of Chemistry UFSM, (11d)
R.Riemschneider M.M.Faria, F.R.Pesserl Raketenantriebsversuche
mit Gemischen aus Silanen plus x unter Zusatz von Silizium Protokolle 1984-1989,
Versuchsort wie (11b) (12a) R Riemschneider, F Messing, H Hajek, A
Brauner, A Arnold Developing a first
pyrolysis apparatus for the thermal cyclization of unsaturated hydrocarbons (Entwicklung einer
ersten Pyrolyse-Apparatur zur thermischen Cyclisierung von ungesättigten KWen) Secreted lab report from works lab of RUHRÖL GmbH, On further development of apparatus, jointly with Prof G R Schultze, Last used
pyrolysis apparatus in (2c) PROJ III Fig
8 (12b) R Riemschneider, H Kasten Further development of
Nov 44 pyrolysis apparatus (12a) for thermal cyclization of hydrocarbons in microquantities,
and new experimental data. (Weiterentwicklung der
Pyrolyseapparatur vom Nov 1944 (12a) zur thermischen Cyclisierung von
Kohlenwasserstoffen im Mikromengen-Maßstab und neue Versuchsdaten). Bull Inst of The 1944 experimental results were confirmed.
Benzene forms above 650° C etc. Up to 10% hexa-1,3-diene-yne-5 is
formed in the range 575 – 625°C. Acetylene was proved as cleavage product above
675° C. This finding indicates that free radical reactions also play
a role in addition to molecular rearrangements. Description of pyrolysis apparatus in (2c): PROJ III Fig 8 (12c) R
Riemschneider (lecturer), W Stuck, A Kühnl, Gg R Schultze 4 lectures: "Quantitative examination of pryolysis of (Quantitative Untersuchungen über die
Pyrolyse von) 1) bis-propargyl
at 525 – 735°C 2)
hexa-1,3-diene-yne-5 at 525°C: Pl 8 a, b in (2c) III 2. 3) aryl
hexa-1,3-diene-yne-5 compounds at 500°C – 725°C 4)
octa-2,4-diene-yne-6: Pl 7” in (2c)
III 2, given in round-table talks in Inst of Petrol
Research, Hannover Tech Coll in June 55 (chair: Prof Dr Gg R Schultze) Ms June 55, 19 p
incl 4 plates, 5 tables and infrared spectra. The results for
phenylbutadienylacetylene are summarized in table 9. o-xylene was proved in the
reaction products of pyrolyizing octa-2,4-diene-yne-6; cf in (2c): Tab 8a/b, 9
and Pl 8. (12d) Gg
R Schultze, R Riemschneider, M Mutter Pyrolyzing bis-propargyl at 400°C – 500°C. Proving
dimethylene-cyclobutenes: (Zur Pyrolyse
von Bis-propargyl im Temperaturbereich von 400 – 500°C. Nachweis von
Di-methylen-cyclobuten) Tab 8a in (2c) Lab report May
56, 6 p
(12e) R Riemschneider, Gg R
Schultze "Aromatizing unsaturated aliphatic compounds"
(„Zur Aromatisierung ungesättigter
aliphatischer Verbindungen“) Synopsis of the
investigations in this field, covering 1943 - 61; ref in (2c: 232, 233, 235,
237, 240 - 246, 269, 282); unfortunately not concluded due to the untimely
death of Prof Dr Gg R Schultze
(12f) R Riemschneider Continuation of 1954/55 aromatization
experiments using newer chromatographic methods
(Fortsetzung der Aromatisierungsversuche aus den Jahren 1954/55 unter Einsatz
neuer chromatographischer Methoden) Ms 1965, 12 p,
unpublished Content included
in following synopsis (12g) R Riemschneider Continuing 1966/67 - 69 "High-temperature
aromatization experiments" („Aromatisierungsversuche bei hohen
Temperaturen“) Report 1969, 21
p; cf. ref. in (12e), UFSM, Brasil Such
investigations had to be broken off in 1969 in consequence of the university
reform (new University Law, so-called university democratization) after the
loss of the institute and its director being demoted to "Comrade head of
working group". The author was only able to resume the high-temperature
aromatization experiments in the field of technological organic chemistry in
Brazil in 1981, viz in the Central Institute of Chemistry - set up by the
author in 1963 - 73 and fully functional by 1981 - at the UFSM in S Maria, RS as
well as at the University of Curitiba, PR in collaboration with Dr F R
Pesserl of BRASTONE, Ltd. After the
positive conclusion of our year-long investigations, begun in 1943 [eg in (2c):
from (233) etc], we no longer had such a great need as before and left this
field to Brazilian colleagues (1984). (13) P.Plichta, W.Posch, B.Hidding „Benzin aus Sand“, Verlag Langen Müller,
2001 (14) R.Riemschneider, F.R.Pesserl, F.Herzel Synthesis of Silanes, SixH2x+2 , and Polysilanes, (SiH2)x [(6b) continued] 3 lab reports 1987, 19 p (proposed to HOECHST and secreted). Content: Halogenated silanes can be reduced
to silanes better with LiAlH4
than with Na. Perhalogenated silanes, (SiCl2)x [prepared from SiCl4 + H2]
deliver under these conditions (SiH2)x : (SiH2)x is a solid powder, O2-sensitive,
to be stored under N2 ; from 70° C on self-igniting, under N2
at 275° C decomposition into H2
+ SiO2 (not melting), in dil
NaOH delivering H2 + SiO2 , that means (SiH2)x promises to
become an interesting “Hydrogen-carrier”
- presumed that the technology: SiO2 SiCl4 + H2 (SiCl2)x (SiH2)x can be realized. Si itself can also serve as
an “Hydrogen-carrier” [Si + H2O + 2NaOH 2H2 + Na2SiO3], but less
effective than (SiH2)x , from Labs of BRASTONE and CONCULTING DEVELOPMENT ENGINEERING, For
correspondence: rriemschneider@yahoo.de [1] After visit with round-table lecture in Hoechst in Feb 1971 (9d); cf. also (14) [2] see here in III 2: Plate 3 with comment in (2c) [3] previously
shown to Prof. Feher in confidence. [4] Secreted in the narrow interest of
Farbwerke HOECHST on the basis of talks with Dr Beer, patent dept. [5] Ablichtung der Publikatioon in (2c) in
PROJEKT XVI als Tafel 4. Die Veröffentllichung (10a) vom Dez. 1949 ist in dieser Mitteilung nicht zitiert
worden, um den Neuigkeitswert der Diplomarbeit von cand.chem. K.Menge nicht
herabzusetzen. [ BWW Society Home Page ] © 2007 The Bibliotheque: World Wide Society |