Plant Technology II
Solid Fertilizer from Urine By
Prof Dr Dr h.c. Randolph Riemschneider Central Institute of Chemistry, Universidade Federal de
Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil It
has become a matter of course today to use the resources available to us
sparingly and to burden the environment as little as possible. All the same,
little use is being made of the huge amounts of urine produced by humans and
animals every day - not taking into account liquid manure. As
early as 1947, experiments were conducted with the objective of recovering
solid fertilizer from urine which could be classified as “NPK fertilizer” [1]. Below,
LLB Fellow Riemschneider summarizes the results achieved at the time which also
offer an opportunity to save the depleting supplies of phosphate.
- The Editor Over the years, the author has not only used preparations based on yeast
such as Y 2000 [2] and H 38 [3] to accelerate plant growth, but also urine
which is produced in vast amounts every day by humans (and animals) and is
exploited only to a very limited extent. The sole exception is liquid manure in
farming. However, the phosphates and the urea contained in urine, fantastic
sources of P and N, are lost year by year. The main difficulty is the issue of
collecting the large quantities of urine. At the time, the author had engaged in the following technical
considerations on the topic of "Fertilizing
with urine in a suitable form" and taken into account certain
experience and observations he had made: He had learnt from a schoolmate that potted plants die after a
comparatively short time if they are given urine instead of water. This means
substances damaging to the plant accumulate in the soil of the pot [4]. This
need not be feared if urine is used as a fertilizer in nature, because it can
be distributed more evenly and will be mixed with water and rain at that. In
agriculture, urine is used the way it is obtained. Preparing urine in the form
of a concentrated "liquid fertilizer" for everyday use is not
advisable for economic reasons and, moreover, would require a considerable amount
of energy. These and other considerations encouraged the author to separate the
valuable components of urine or diluted urine with the aid of one or more
suitable precipitants and to prepare a solid
urine fertilizer with an analysed and, if necessary, adjusted NPK content. Professor K. Lohmann, head of the laboratory course in Physiological
Chemistry for medical students at Berlin University, had asked the author in
1947 to give the introductory lecture to this laboratory course in his stead,
for example for the "urine lab course" (400 medical students). In
order to collect the urine necessary for the planned experiments, three 20
litre bottles with a large funnel had been installed in the well frequented
gents' toilet at the With the consent of Prof Lohmann, the author was able to design and deliver
the introductory lecture in accordance with his own concept. During the
"urine lecture", he referred to the
vast amounts of urine (which are in the range of trillions of litres from 5
billions of humans every year) which are produced in sterile form by mankind
and which contain solid N, P, K and Mg components suitable as fertilizers. Even during the preparatory phase for the lab course, the author made
plans to conduct experiments with any unused urine quantities: The solids
precipitated with suitable "salts" yielded a powder after filtration
and drying which did not give the slightest inkling of its origin, i.e. was
practically odourless. The formula developed in additional experiments has been
included in the hectographed lecture notes for the Biochemical Basic Lab Course
developed by the author [5] under the title "Urine Solid Precipitation for
the Recovery of Fertilizer". The following questions were discussed in the
seminars accompanying the above mentioned lab course: How can urine best be
"collected"? Is it possible to design toilet bowls permitting the
separation of urine? Concept of "separating toilets". What is the
attitude of water-treatment authorities on the question of separating water for
drinking and water for other uses? During the years 1948/49, the method the author had developed for
separating the valuable N, P, K solids from human urine or diluted urine was
improved further, especially under the aspect of profitability. The first outdoor experiments on lettuce
and tomatoes were conducted with the
preparation named U 48 in the allotment garden of a friend in Berlin-Falkensee
- see the first series of photographs. These experiments were then continued a
few years later with the urine fertilizer preparation U 55 in the greenhouse belonging
to the Institute of "Kalisyndikat" (Potassium Syndicate) in
Berlin-Lichterfelde-Süd rented by the Free University. U 55 and NPK-adjusted U
55-preparation, were certainly able to compete with a common commercial NPK
fertilizer - see the second series of photographs. The experiment concluded
with a written summary of experiments with potted chrysanthemums and hydrangeas
with different fertilizers. Large-scale fertilizing experiments with "U 55" and
"adjusted U 55" were conducted in Brazil later, namely on the fazenda
of the President of the Federal University Santa Maria in Rio Grande do Sul
(UFSM). Plants: Lettuce, red cabbage,
celery, rice. In parallel, we ran experiments with a commercial phosphate
fertilizer prepared from salts. Excellent results were achieved with U
55-preparations which are documented in [6]. In trials over the years, test
persons and food chemists never found any difference concerning the
taste and the vitamin content between U 55 treated vegetable plants and
controls. Comments on the following series of photographs (photographs with the dates they
were taken): First series of photos on U 48 (controls on the right-hand side):
Lettuce 2, 78; tomatoes 29, 46, 65. Second series of photos on U 55: White cabbage 23, 52 (control in the
middle); kohlrabi 25, 75; celery 4, 72. - The soil in each of the pots
consisted of 1 TS sand, 1 TS peat plus 3g of CaCO3. U 48 – Experiments: U 55 – Experiments: Further experiments with different fertilizers were carried out in Ablichtung eines
Protokolls: Versuch mit
Chrysanthemen und Hortensien Vorbereitung der Pflanzerden und Pflanzung Normale Gartenerde wurde
durch ein feinmaschiges Sieb gegeben, um sie zu lockern und von Unkraut und
Steinen zu befreien. Anschließend wurde sie mit gesiebtem Torf im
Volumenverhältnis 1:1 vermischt. Pflanzung der Chrysanthemen: Zur Pflanzerde wurden 3g CaC03/L
hinzugegeben Die 8-10cm hohen Setzlinge
wurden wie folgt in 1L-Blumentöpfe gepflanzt: 10 Pflanzen ohne weiteren Zusatz 10
Pflanzen mit Zugabe von 3g Plantosan-4 D pro Topf 10
Pflanzen mit Zugabe von 3g Urindünger-Pulver
pro Topf 10 Pflanzen mit Zugabe von 3g Eigenmischung
b pro Topf Je 5 Töpfe einer Gruppe
wurden in das Freibeet gestellt, die anderen Töpfe verblieben im Gewächshaus.
Pflanzung der Hortensien: Die 15cm hohen Stecklinge
wurden in 1L-Töpfen geliefert. Das Wurzelwerk war schon
soweit ausgebildet, daß eine Umpflanzung in gleichgroße Töpfe mit anderer Erde
unmöglich war. Die Düngesalze wurden
oberflächlich in die Töpfe eingekrazt. Die Düngung der Hortensien
erfolgte wie nachstehend: 10 Pflanzen ohne weiteren Zusatz 10 Pflanzen mit Zugabe von 3g Plantosan-4 D pro Topf 10 Pflanzen mit Zugabe von 3g Urindünger-Pulver pro Topf 10 Pflanzen mit Zugabe von
3g Eigenmischung b pro Topf Je 5 Töpfe einer Gruppe wurden in das Freibeet gestellt,
die anderen Töpfe verblieben im Gewächshaus. Die
Pflege der Pflanzen beschränkte sich auf tägliches Gießen mit Leitungswasser
und auf Entfernung von Unkräutern; ferner mußten die hoch wachsenden Pflanzen
zur Vermeidung von Brüchen angebunden werden. Seit der Pflanzung der
Setzlinge am 19.Juni wurde deren Entwicklung ständig beobachtet. Schon nach 2
Wochen konnte ein stärkeres Wachstum der gedüngten Chrysanthemen gegenüber den
ungedüngten verzeichnet werden. Bei den Hortensien konnte erst nach 4 Wochen
ein unterschiedliches Wachstum erkannt werden. Bei allen Sorten zeigten
die gedüngten Pflanzen ein kräftigeres Grün der Blätter als die ungedüngten. The following tables clearly show that the fertilized plants grew much
better than the unfertilized ones. Tabelle vom 26. Juli: Tabelle vom 7. August: Durch die Aufstellung der Pflanzen im Freibeet und im Gewächshaus konnte
der Witterungseinfluß auf das Wachstum beobachtet werden: Im Freibeet war die
Wuchshöhe der Hortensien kleiner, die Blütenzahl größer und der
Blütendurchmesser kleiner als im Gewächshaus. Bei den im Freibeet aufgestellten Chrysanthemen waren die Wuchshöhe und die
Zahl der Verästelung deutlich geringer als im Gewächshaus. That much on the experiments conducted from 1947 to 1957 and later. The time was not right for a patent application then - it was too early:
Patent protection is granted for only 20 years, and the author expected a
waiting period of 40 to 50 years (!). Actually, the first steps have only
just been taken. ROEDIGER has developed a "separation toilet"
which offers the following technical advantages: Reduction of toilet flush
water consumption and undiluted urine separation as a way to recycle human
waste into agricultural fertilizer [7]. Also, the point when the earth's phosphate supplies will be depleted has
drawn nearer. The author thinks that the time is now right for recovering
fertilizers based on urine solids - in combination with a method for separating
drinking water and water for other uses: Our drinking water is
much too valuable to be misused for toilet flushing. At the age of 90, the author does not intend to apply for a patent for
the process developed approximately 60 years ago, but will be happy to make his
knowledge available to those who wish. EPILOGUE I should be permitted to add an epilogue to underline the significance
of the fertilizer experiments described here: In essay one [2] possibility was shown to do without
artificial fertilizer altogether or at least restrict its use considerably. It is undisputed that the world needs fertilizer. Agricultural spaces
shrink, the world population grows and the need for food increases. The following example from the
middle of densely populated This example shows how urgent it is to develop processes that do not
need artificial fertilization. References: [1]
R.Riemschneider Herstellung und analytische Untersuchungen von U 48 und U
55, Urin-Feststoff-Fällungen (reguliert) zu Düngerzwecken – Düngerversuche mit
U 48, U 55 7 Lab reports 1948 and 1954/55: In all cases with U 55 (U
48) better growth than in control groups; comparison with usual NPK-Fertilizer
was positive. [2] R. Riemschneider Plant technology I : at www.bwwsociety.org/journal/html/planttech.htm. 2008 [3] R.Riemschneider Studiums der „Konservierung von
Hefe“, führend zum Präparat H 38, und dessen Prüfung auf wachstumsfördernde
Wirkung an tierischen und pflanzlichen Organismen 12 Lab report from 1938. (unpublished): Animal experiments 1938 with
Johannes Hoeck, from 1942 with Franz Maaz,
Elisabeth Schölzel, Barbara Rohrmann, Petrpnella Geschke. Plant experiments
from 1938 with Eva Hausmann, Nussa Schuster, Elisabeth Schölzel, Karl Wassmannsdorf;
Christian Rohde [4] H.Doll,
Privatmitteilung [5] R.Riemschneider Biochemisches Grundpraktikum 1953-1959 : Hektographierte Texte, den Studenten zur
Verfügung gestellt 1960-2009 : In 9 Auflagen gedruckte Exemplare,
erschienen in deutscher und ab 1974 auch in portugiesischer Sprache für
Studenten der FU Berlin und der UFSM, Santa Maria, Rio Grande do Sul, Brasilien
(Universitätsdruckerei). 4.Auflage 1982:
FRED HÖPFNER, Pestalozzistr.106, Berlin 12. Die
Arbeitsvorschrift „Urinfeststoff-Fällung zur Düngergewinnung“ war nur in den hektographierten Exemplaren enthalten
und ist später aus patentrechtlichen Gründen gestrichen worden. Ebenfalls
in 9 Auflagen erschienen ist das zum Praktikum gehörende Buch, betitelt „Material für biochemische
Einführungsvorlesungen”; Druck der 9. Auflage 2009 (Seiten XV + 75) durch:
DIGITAL-PRINTING-HALL-GmbH, D-10787 Berlin, Bayreuther Str.8 [6] A.Brown, R.Riemschneider Vergleichende Düngerversuche mit „U
55“, mit „U 55 phosphatreguliert“ und mit Phosphatdüngersalzen UFSM-Gutachten, 1957, 15 Seiten [7] Roediger
Vakuum- und Haustechnik GmbH ROEDIGER-No Mix Toilet, D-63450
Hanau, http://www.roevac.com 2009 Berger Biotechnik GmbH, http://www.berger-biotechnik.com
2007 This essay is
extacted from the author’s book “75 Years Chemistry: Re-Reading’’ Part II, PROJ. V. [1] [2] its damages to the
underground-water level for the whole region are and will become immense and
vast (rain).. [ BWW Society Home Page ] © 2011 The Bibliotheque: World Wide Society |