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B. Preface

The feature of a fluid in the gas state is not the same as its feature in the liquid state.

The di↵erence between them can be determined intuitively and easily. The gas phase of a

fluid and the liquid phase of the fluid can coexist with the formation of the clear interface.

Then, there must be a cause that makes the fluid in the gas state di↵er from that in the

liquid state. As a mutual attractive force acts between particles comprising each particle

pair, the mutually attractive force can inhibit the particles of each pair from moving freely.

In a classical fluid system, particles having small relative momenta cannot homogeneously

mix with particles having large relative momenta. Even in a Bose fluid system, particles

having small and large relative momenta cannot homogeneously mix.

The inhibition of movements of particles owing to mutually attractive force can cause

physical clusters of particles to form in the fluid. The formation of physical clusters can

contribute to the changing features of the fluid. Hence, analyzing the formation of physical

clusters in the fluid is extremely necessary. The formation of physical clusters should allow

the fluid in the gas state to di↵er from that in the liquid state. The fluid in the liquid

state has the capability to form the interface between the gas phase and the liquid phase;

in other words, the fluid in the liquid state should be characterized by the existence of

physical clusters. Fundamentally, the development of physical clusters in the fluid should

influence the features of the fluid. The structure of the fluid, as a specific pattern of the

particle distribution, should be characterized by the formation of physical clusters. Their

formation is influenced by the features of attractive forces between the particles. In the case

of a Coulomb fluid, it is influenced by both the features of an attractive force between the

particles of a pair and the features of a repulsive force between the particles of another pair.

A characteristic structure maintained in a fluid is caused by the features of an interparticle

force between the particles of each pair.

Particles with hard cores interacting with each other through attractive forces in a Bose

fluid system can form a specific pattern of the particle distribution that depends on their

momenta. Even if the particles are made to have su�ciently small momenta, the thermal

excitation can allow particles of small momenta and those of no small momenta to coexist.

Then, the former particles cannot homogeneously mix with the latter particles. This can

allow the particle distribution to have a specific pattern. The formation of the interface
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between the gas phase and the liquid phase in the Bose fluid system requires a specific

structure, as the pattern of the particle distribution, to be linked to the features of the fluid.

At the minimum, the presence of mutually attractive forces, which make particles with hard

cores interact with each other, can influence the thermodynamic features of the fluid. If the

e↵ects of attractive forces acting on a single particle, from other particles surrounding it, are

treated as the mean e↵ect, then the quasiclassical expressions of a partition function enables

discussion of the thermodynamics of the system that accompanies a structural situation

where particles of small momenta cannot homogeneously mix with particles of no small

momenta.

The physical cluster formation in various situations, including astronomical situations,

and the specific pattern formation of the particle distribution depending on the momenta

of particles must be further studied. A study on linking the limitation of the appearance

of the liquid phase and the features of interactions between particles also must be further

developed. These indicate that the descriptions and explanations in this book must continue

to be updated with progress in this field, where the principal e↵orts of the author have been

made so far.

The publication of this book was aided by the director John Pellan, the BWW Society,

the Institute of Positive Global Solutions. The author gratefully acknowledges his aid. For

editing and for valuable comments, the author thanks Editage (www.editage.com).

June 2021 T. Kaneko
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I. INTRODUCTION

In an ensemble of simple particles exemplifying the atoms or molecules that form a fluid,

inhomogeneities can exist, because the particles interact with each other through attractive

forces and repulsive forces. If a particle ensemble can preserve a state of fluid at extremely

low temperatures, then the particles can move even coherently. Under the condition that a

particle ensemble that preserves a state of fluid is homogeneous, the following two relations

are satisfied:

(1) The distribution of particles in a microscopic volume �V located at ra cannot di↵er

from the distribution of particles in microscopic volume �V located at rb ( 6= ra).

(2) The distribution of the momenta of particles in a microscopic volume �V located at

ra cannot di↵er from the distribution of the momenta of particles in microscopic volume �V

located at rb ( 6= ra).

If factors that prevent the ensemble from becoming homogeneous are generated, then the

occurrence of interesting phenomena can be observed. These factors can a↵ect the behaviors

of fluids and the configurations of particles. One of these factors is the formation of physical

clusters.

For an ensemble of particles exemplifying atoms or molecules, the liquid phase coexists

with the gas phase at the temperatures between the triple point and the critical point. At

these temperatures, the density of particles in the liquid phase is much higher than that in

the gas phase, even if each portion in the liquid phase near the interface and each portion

in the gas phase near the interface are in equilibrium. This requires the compressibility in

the liquid phase to be much smaller than that in the gas phase. Thus, we must consider the

contribution of something that generates the di↵erence between each portion in the liquid

phase and each portion in the gas phase. The contribution of the formation of physical

clusters should be considered as a factor that allows features of a fluid in the liquid phase

to become di↵erent from the features of the fluid in the gas phase.

Physical clusters can be formed even in the gas phase if the temperature of a system

is near the liquid-vapor critical point. Particles that constitute the system interact with

each other via the attractive forces between them. The system includes particles that can

freely and individually move because the contribution of the relative kinetic energy between

the particles of each pair exceeds the contribution of an attractive force acting between
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them. The system includes other particles that cannot perform their movements being free

from each other because the contribution of the attractive force acting between the particles

of each pair exceeds the contribution of the relative kinetic energy between them. The

particles that cannot perform their movements being free from each other can contribute to

the formation of physical clusters.

At the minimum, the attractive forces between particles enable the particles to be located

near each other. Repulsive forces between particles enable the particles to become far from

each other. The strength of each attractive force and that of each repulsive force both depend

on the mean interparticle distance. The formation of physical clusters depends on four

principal factors: the attractive forces between particles, the repulsive forces between them,

the mean interparticle distance, and the momenta of particles. The formation of physical

clusters can influence the features of a fluid system. If the contributions of attractive forces

between particles are so small that a particle ensemble maintains the liquid state, then,

partial ensembles of particles that are located near each other and moving coherently can

be generated as specific excitation states.1 The formation of ensembles of particles moving

coherently causes the thermodynamic properties of a quantum fluid system to change.

For a classical fluid system, a basic idea for estimating the formation of physical clusters

was given by Hill2. A useful method for analyzing the formation of physical clusters via

an integral equation was established by Coniglio et al.3 The method allows the Ornstein–

Zernike equation to be split into two integral equations and the pair correlation function

to be split into two correlation functions. One of the two correlation functions is called

the pair connectedness. One of the two integral equations is the integral equation for the

pair connectedness. The integral equation for the pair connectedness is used to analyze the

formation of physical clusters. This has enabled many studies on the o↵-lattice percolation

of physical clusters.4–7

The mathematical structure of the integral equation is the same as that of the Ornstein–

Zernike equation. Hence, it is necessary to solve the integral equation using a specific closure.

The closure can be extracted from the Percus–Yevick (PY) approximation.3 The relation

between the PY approximation and the mean spherical approximation (MSA) yields a simple

closure.8 The use of the simple closure allows the pair connectedness and the formation of

physical clusters to be estimated easily. Its use aids in revealing a specific relationship

between particles belonging to physical clusters and other particles no belonging them. The
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relationship can contribute to the generation of the liquid state. Use of the simple closure

allows us to understand the contribution of physical cluster formation to thermodynamic

properties. If the distribution of galaxies in the universe is regarded as physical clusters of

galaxies, then the physical clusters have a fractal structure. Similarly, the distribution of

charged particles in a specific medium has a fractal structure. The use of the simple closure

and an estimate of the pair connectedness aid in revealing the fractal structure of physical

clusters.
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II. SINGLE-COMPONENT FLUIDS INCLUDING PHYSICAL CLUSTERS

A. Classical Fluid System of N Particles

For a classical fluid system of N particles with volume V , partition function QN is defined

as

QN =
1

N !(2⇡h̄)3N

Z

V

dr1

Z

V

dr2· · ·

Z

V

drN

⇥

Z 1

�1
dp1

Z 1

�1
dp2 · · ·

Z 1

�1
dpN exp[��HN ], (1)

where a coe�cient h̄ is the ratio of Planck’s constant to 2⇡, and another coe�cient � is

defined as � ⌘ 1/kBT with Boltzmann’s constant kB and temperature T of the system. In

Eq. (1), HN is given by

HN =
NX

i=1

p
2

i

2m
+ VN(r1, r2, · · · , rN), (2)

where m is the particle mass, and pi is defined by pi ⌘ |pi|, with momentum pi of the i

particle. For a fluid, VN(r1, r2, · · · , rN) in Eq. (2) can be expressed using a pair potential

uij(rij), which includes both the contribution of the attractive force between i particle located

at ri and j particle located at rj and the contribution of the repulsive force between them,

and it is given as follows:

VN(r1, r2, · · · , rN) =
NX

i<j

uij(rij), (3)

where rij expresses the three-dimensional distance between i particle and j particle as follows:

rij = |ri � rj|. (4)

Partition function QN allows the Helmholtz free energy, F , to be given as

F = �kB lnQN . (5)

For a classical fluid system, QN can be estimated as

QN =
1

N !

✓
m

2⇡h̄2
�

◆3N/2

ZN , (6)
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where

ZN =

Z

V

dr1

Z

V

dr2 · · ·

Z

V

drN exp[��VN(r1, r2, · · · , rN)]. (7)

With using ZN , the probability density, under the condition that particle 1, particle 2,

· · · , and particle N are located at r1, r2, · · · , and rN , respectively, can be estimated as

1

ZN

exp[��VN(r1, r2, · · · , rN)].

The possible ways for choosing one particle from N particles is given by N !/(N � 1)!1!. If

n
(1)(r1)dr1 denotes the probability that one of the N particles is located in a volume element

dr1 at r1, then the probability is given as

n
(1)(r1)dr1 =

✓
N !

(N � 1)!1!

◆
dr1
ZN

Z

V

dr2

Z

V

dr3 · · ·

Z

V

drN exp[��VN(r1, r2, · · · , rN)]. (8)

The distribution of particles in a volume element cannot depend on the locations of the

volume element. If this is satisfied for a fluid

n
(1)(r1) =

N

V
= ⇢. (9)

Similarly, if n(2)(r1, r2)dr1dr2 denotes the probability that a particle is located in a volume

element dr1 at r1 and another particle is located in a volume element dr2 at r2, then the

probability is given as

n
(2)(r1, r2)dr1dr2 =

✓
N !

(N � 2)!2!

◆
dr1dr2
ZN

⇥

Z

V

dr3

Z

V

dr4 · · ·

Z

V

drN exp[��VN(r1, r2, · · · , rN)]. (10)

The distribution of particles in a volume element can maintain independence of locations of

the volume element on average. If this is satisfied for a fluid,

n
(2)(r1, r2) = n

(2)(r12). (11)

Quantity n
(2)(r12) corresponds to the radial distribution function for a fluid system. Pair

correlation function g(r12), which is related to h(r12) = g(r12) � 1 with correlation func-

tion h(r12) that satisfies the Ornstein–Zernike equation, is related to the radial distribution

function as follows:

n
(2)(r12) = n

(1)
n
(1)
g(r12). (12)
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ZN can be rewritten using the Mayer f -function, which is useful for analyzing a fluid based

on an aspect that allows a fluid to be considered to be an ensemble of pairs of particles.

Then, ZN is given by

ZN =

Z

V

dr1

Z

V

dr2 · · ·

Z

V

drN

NY

i<j

(1 + fij)

=

Z

V

dr1

Z

V

dr2 · · ·

Z

V

drN
h
1 + (f12 + f13 + · · ·+ f1N)

+(f12f13 + f12f14 + · · ·+ f12f1N) + · · ·

+(f23f12 + f23f13 + · · ·+ f23f1N) + · · ·

+(f23f12f13 + f23f12f14 + · · ·+ f23f12f1N) + · · ·

+(f34f24f12+f34f24f13 + f34f24f14 + · · ·+ f34f24f1N) + · · ·

+(f34f23f24f12+f34f23f24f13 + f34f23f24f14 + · · ·+ f34f23f24f1N) + · · ·

i
, (13)

where Mayer f -function fij is defined as

fij(rij) ⌘ e
��uij(rij) � 1. (14)

Hence, the f -function fij satisfies

fij(rij) = fji(rji),

lim
rij!0

fij(rij) = �1,

lim
rij!1

fij(rij) = 0.

The minimum of fij(rij) is �1. If the i and j particles have hard cores, then fij(rij) =

�1 is satisfied in the region where the hard cores contribute to their interaction, which is

characterized by uij(rij) = 1. However, function fij(rij) is positive within the range where

the attractive force retains e↵ective strength, and it expresses the strength of the attractive

interaction in this range. The value of fij(rij) becomes zero outside this range in which an

attractive force between the i particle and j particle retains e↵ective strength. If an ensemble

of particles maintains a fluid, a specific situation �uij(rij) � kBT , i.e., 1 ⌧ ��uij(rij), does

not occur. Thus, the maximum of fij(rij) is not a large value.

Eq. (13) indicates that ZN is the sum of the integrals of the products of the f -functions.

This means that pair correlation function g(rij) also can be given as the sum of the integrals

of the products of the f -functions, even though the two coordinates specified for g(rij) by

rij are not integrated.
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In Eq. (13), the integrals of the products of the f -functions have typical features. The

integrals of fij for i and j, satisfying i < j, are identical. The integrals of f12f1j for j,

satisfying 3 < j, are identical. The integrals of f12f1j for j, satisfying 3 < j, are identical.

However, the integral of f23f13 is not identical to each integral of f23f1j for j, except for

j = 2and3. Cases similar to the above can be obtained from integrals of other products of

the f -functions.

The integrals of the products of f -functions yield a specific image that illustrated that

two particles specified by each f -function are linked mathematically by the f -function.

This image enables an ensemble of particles to be considered clusters that are formed from

particle pairs linked mathematically by f -functions. Then, each f -function forms a f -bond

that mathematically links two particles.

In Eq. (13), f23f13, f23f12f13, f34f24f13, and f34f23f24f13, are found as specific products of

f -functions. The first product, f23f13, denotes that two f -bonds link particle 1 and particle

2 via particle 3, as shown by a diagram symbolized by

1 $ 3 $ 2

The third product, f34f24f13, denotes that particle 1 and particle 2 are linked via particle 3

and particle 4, as shown by a diagram symbolized by

1 $ 3 $ 4 $ 2,

which forms one path of f -bonds. The second product, f23f12f13, denotes that particle 1

and particle 2 are linked through two paths of f -bonds, as shown by a diagram symbolized

by
8
><

>:

1 $ 2

1 $ 3 $ 2,

which forms two paths of f -bonds. The fourth, f34f23f24f13, denotes that particle 1 and

particle 2 are linked through special two paths of f -bonds that form a diagram symbolized

by
8
><

>:

1 $ 3 $ 2

1 $ 3 $ 4 $ 2,
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which forms two paths of f -bonds. Thus, all the paths of f -bonds that connect particle 1

to particle 2 include particle 3 as a common particle.

In the case of pair correlation function g(r12), which is expressed for the use of f -functions,

the two coordinates labeled as 1 and 2 are not integrated. Coordinates r1 and r2, which

are not integrated, are called the root points. The other coordinates that are integrated are

called the field points, and they are labeled as 3, 4, · · · to distinguish them from the root

points. Both the root points and the field points correspond to the particle coordinates.

Pair correlation function g(r12) includes the integrals of the products of the f -functions

exemplified by the paths of f -bonds corresponding to f23f13, f34f24f13, and f34f23f24f13;

however, the two coordinates labeled as 1 and 2 are not integrated. All the paths of f -bonds

given as f34f23f24f13 form a diagram, which comprises the two paths between 1 and 2, and

the two paths include the coordinate corresponding to particle 3. The path of f -bonds

given as f23f13 forms a diagram, and the path of f -bonds given as f34f24f13 forms another

diagram. Then, each path that forms each diagram includes the coordinate corresponding

to particle 3. Thus, there are diagrams in which at least one coordinate corresponding to a

particle is shared as a common coordinate by each path of f -bonds that connect particle 1

to particle 2. Each of the diagrams is called a nodal diagram, and the common coordinate

is a nodal point.

Pair correlation function g(r12) also includes the integrals of the products of the f -

functions, exemplified by the paths of f -bonds corresponding to f23f12f13; however, the

coordinates 1 and 2 are not integrated. In a diagram that is formed by all the paths of

f -bonds given as f23f12f13, there is no nodal point. As exemplified by this case, there are

diagrams that do not include nodal points. Each diagram that does not include nodal points

is a non-nodal diagram.

Pair correlation function g(r12) can be expressed in the form of a density expansion.9,10

Each term found in the form of the density expansion of g(r12) is formed by the integrals of a

product of the f -functions; however, the two coordinates 1 and 2, corresponding to the root

points, are not integrated in each term. The other coordinates are integrated in each term.

A diagram of the f -bonds that forms each term in the density expansion corresponds to

either a nodal diagram or a non-nodal diagram. According to the density expansion, g(r12)

can be given by the sum of the contribution of all the nodal diagrams and the contribution

of all the non-nodal diagrams.9,10 This demonstrates that the Ornstein–Zernike equation,
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as an integral equation, should be satisfied by g(r12) and is expressed as the sum of the

contribution N(r12) of all the nodal diagrams and the contribution c(r12) of all the non-

nodal diagrams. Thus, the use of direct correlation function c(r12) as the contribution of all

the non-nodal diagrams allows the Ornstein–Zernike equation to be expressed as

h(r12) = c(r12) +N(r12), (15)

where the contribution of all the nodal diagrams can be estimated by

N(r12) = ⇢

Z

V

c(r13)h(r32)dr3 (16)

with

h(r12) = g(r12)� 1. (17)

An ensemble of the particle pairs that are specified by the f -functions, forming a product

in the density expansion, is regarded as an ensemble of particle pairs linked by f -bonds. The

paths of the f -bonds forming each nodal diagrams and the paths of the f - bonds forming

each non-nodal diagrams allow the behavior of a particle corresponding to a root point to be

propagated to the other particle corresponding to the other root point. However, a ensemble

of particle pairs linked by the f -bonds cannot simply correspond to a physical cluster, even

though the ensemble corresponds to a mathematical cluster.10
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B. Contributions of physical clusters

1. Phenomena dependent on the formation of physical clusters

A fluid system can include special particle pairs. Then, each particle pair is specified

as a pair formed by two particles interacting in a bound state wherein the contribution

of the mutually attractive force between them exceeds the contribution of their relative

kinetic energy. Each physical cluster is formed by such particle pairs.2 Particles constituting

a physical cluster can transiently stay near each other because of the mutually attractive

force. The formation of physical clusters can transform the properties of a fluid system.

Various phenomena involving phase behavior can be caused by the formation of physical

clusters.

In a fluid system consisting of particles exemplifying atoms or molecules, inhomogeneity

is generated as the density fluctuates.12,13 The inhomogeneity is developed near the liquid-

vapor critical points. The formation of physical clusters can cause density fluctuations in a

fluid that is in the gas state. The degree of density fluctuations reaches its maximum at the

liquid-vapor critical point of the fluid. This allows the compressibility to diverge to infinity at

the liquid-vapor critical point. The compressibility equation allows pair correlation function

g(r) to be related to pressure P of a single component fluid as follows:

�

✓
@P

@⇢

◆

V,T

��1

= 1 + lim
V!1

⇢

Z

V

[g(r)� 1]dr (r ⌘ |r|). (18)

Even at the critical point, g(r) maintains finite values in the range of 0  r < 1.

The behavior of g(r) denotes that the correlation between two particles disappears with an

increase in the three-dimensional distance, r, separating one of the two particles from the

other.14 Based on these features, Eq. (18) requires that divergence of the compressibility

be caused by the fact that the long-range behavior of g(r) is characterized near the critical

point as follows:

g(r)� 1 ⇠ r
�µ (0 < µ  3). (19)

In fact, the long-range feature of g(r) can be expressed in several particular conditions

as the product of factor r
D�3 (D = 2) and a particular function �(r), which is given as a

Taylor series with respect to powers of r.15,16

g(r)� 1 ⇡ r
D�3

�(r) (D = 2). (20)
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Despite this, the dependence of g(r) on distance r between two particles17 deviates near the

liquid-vapor critical point. Its dependence on r cannot be expressed by the product of a

negative power r�1 and a particular function �(r).13,18 The density fluctuations makes the

dependence of g(r) on r near the liquid-vapor critical point13,18 di↵er from that in the gas

state when it is far from the critical point.

(a) Anomalies near liquid-vapor critical points

The density fluctuations can result in anomalies19–23 with respect to various properties of

the fluids near their liquid-vapor critical points. Inhomogeneity, which is generated in fluids

consisting of metallic atoms near their liquid-vapor critical points,24 can cause anomalies

in the electrical properties,19 optical reflectivity,20 and optical absorption.20,21 The electrical

conductivity of liquid mercury maintained at a temperature near the critical point decreases

with a rather steep gradient as the density of the mercury atoms decreases.19 The real part of

the dielectric constant, determined using optical reflectivity and absorption measurements,

for a mercury fluid near the critical point increases sharply at a particular density as the

density of the mercury atoms increases.20 Inhomogeneities that lead to the occurrence of the

anomalies can be caused by the physical cluster formation.24

The viscosities of fluids can become anomalous near the liquid-vapor critical points.22,23

The viscosities of fluids exhibit asymptotic divergence near the liquid-vapor critical points.

Measurements of the viscosities of carbon dioxide and xenon near their critical points yield

the critical exponent that can characterize the asymptotic divergence.22 Physical cluster

formation can result in a characteristic increase in the viscosities of fluids near the critical

points.23

When the temperature of a fluid system is reduced toward the liquid-vapor critical point,

the number of specific particle pairs is increased. Then, each of the particle pairs is speci-

fied as two particles interacting in a bound state wherein the contribution of the mutually

attractive force between them exceeds the contribution of their relative kinetic energy. An

increase in the number of such particle pairs allows physical clusters to grow. This denotes

that various critical phenomena observed in fluids are caused by the formation of physical

clusters. Physical cluster formation allows the features generated in the liquid state of a fluid

to di↵er from the features found in the gas state of the fluid. Various critical phenomena

imply that physical cluster formation causes a gas-liquid phase transition. The development
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of physical clusters, which are formed by attractive forces between colloidal particles, allows

a colloidal solution to generate a gel state.25 According to an analogy with the occurrence

of the gel state, the contribution of the physical cluster formation induces the transition of

a fluid from the liquid state to the solid state.

(b) Contribution of the physical cluster formation

The contribution of physical cluster formation to the gas-liquid phase transition is sug-

gested because the liquid-vapor interface become macroscopically smooth for a fluid in which

the liquid phase and the gas phase coexist. At a temperature slightly beyond the liquid-

vapor critical point of the fluid, the interface disappears. To form a smooth liquid-vapor

interface, particles constituting the liquid phase must have the capability to maintain their

density; however, particles constituting the gas phase do not have the capability.

The high-density part maintains the liquid phase and it must generate a macroscopic

force, which contributes to the minimization of the interface. The macroscopic force causes

the liquid-vapor interface to become smooth. The macroscopic force is not caused by each

particle pair that is specified to be two particles interacting in an unbound state wherein

the contribution of their relative kinetic energy exceeds that of the mutually attractive force

between them. Hence, the macroscopic force must be caused by the presence of each particle

pair that is specified to be two particles interacting in a bound state wherein the contribution

of the mutually attractive force between them exceeds that of their relative kinetic energy.

The formation of the liquid phase must be aided by the formation of physical clusters.

The low-density part maintains the gas phase and it principally includes particle pairs that

are specified to be two particles interacting in an unbound state wherein the contribution

of their relative kinetic energy exceeds that of the mutually attractive force between them.

The high-density part in the liquid phase also includes such particle pairs. The particles

forming these particle pairs must be confined between the branches of physical clusters to

generate a macroscopically smooth interface. The confinement of these particles between

the branches of physical clusters allows the interface to become smooth. This confinement

can aid in transforming the fluid of the liquid phase into the solid state.

The formation of physical clusters in multicomponent fluids is an interesting subject that

should be considered. Physical clusters must influence the microscopic distribution pattern

of particular atoms or molecules that are dissolved as solute particles in a fluid in the liquid
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state. In a fluid in the gas state, an e↵ect of the physical cluster formation is not expected.

A fluid in the gas state microscopically homogeneously mixes with another fluid in the gas

state.

Solute particles that cannot actively contribute to the physical cluster formation have a

tendency to become distributed among the branches of physical clusters. Solute particles

that can actively contribute to the physical cluster formation participate in the physical clus-

ter formation and are distributed as portions of the physical clusters. Thus, physical clusters

can make a microscopic distribution pattern of solute particles become inhomogeneous in a

fluid mixture such as a liquid of metallic alloy and solute-solvent mixtures.

A specific e↵ect of such a microscopically inhomogeneous distribution pattern of solute

particles can be found as a macroscopic phenomenon called the osmotic pressure. The

osmotic pressure occurs when solute particles are distributed in a fluid. The osmotic pressure

depends on whether solute particles can actively contribute to the physical cluster formation.

Moreover, the osmotic pressure depends on whether the stability of the physical clusters is

high or low.

Under the condition that the stability of the physical clusters is low, the formation of

physical clusters and the decomposition of physical clusters can occur as very sensitive

responses to slight variations in the temperature. The anomalous behavior of the thermal

conductivity of a fluid should be determined in such a specific situation.26 Physical clusters

formed in the fluid do not have the capability to stably confine particles that do not belong to

the physical cluster, thereby allowing both the confinement of the particles and their release

to occur easily. This e↵ect enables the fluid to be stirred. Thus, the thermal conductivity of

the fluid should be enhanced under the condition that the stability of the physical clusters

varies sensitively.

Physical cluster formation can contribute to the occurrence of various phenomena. In-

deed, the magnitude of the pair correlation function should involve an e↵ect of the physical

cluster formation. The pair correlation function is determined by X-ray scattering measure-

ments and neutron scattering measurements. Despite this, the fraction of the contribution

of the physical cluster formation to the pair correlation function is not be su�ciently clear.

Therefore, a method for estimating the contribution of the physical cluster formation to the

pair correlation function should be established as a readily treatment.
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(c) To estimate physical cluster formation

E↵ects of physical cluster formation can appear in various phenomena. A procedure for

simply estimating the physical cluster formation should be useful for examining its e↵ects on

the features of a fluid. Each physical cluster that is formed in a fluid system is an ensemble

of particles that are linked to each other by bonds. Based on Hill’s concept,2 each bond

is defined as a bound state in which a contribution of mutually attractive forces between

pair particles exceeds a contribution of their relative kinetic energy. A useful procedure for

estimating the physical cluster formation owing to such bonds can be found according to a

concept of Coniglio et al.,3 and results in an integral equation.

The use of the integral equation makes it possible to examine the physical cluster forma-

tion caused by a contribution of an extremely short-range attractive force4 and to examine

the physical cluster formation caused by the Yukawa potential.8,27 A procedure for making

corrections to the PY approximation28 enables improvement in an estimation of the physical

cluster formation as the integral equation is applied.7 Although the integral equation enables

the physical cluster formation to be examined, it is not equivalent to the Ornstein–Zernike

equation with respect to their physical meanings.

The use of the Ornstein–Zernike equation has been successful for examining fluids in

the gas and liquid states. The behavior of particles that is described by the Ornstein–

Zernike equation indirectly involves the contribution of the physical cluster formation. The

Ornstein–Zernike equation includes the contribution of the integral equation, which enables

the formation of the physical clusters to be examined. This means that subtracting the

contribution of the integral equation from the Ornstein–Zernike equation yields an additional

integral equation, which is equivalent to both an integral equation derived by Stell28 and

another one derived by Chiew and co-workers.6 If this additional integral equation is coupled

to the integral equation that enables the physical cluster formation to be examined, then

the two integral equations provides an integral equation system that is equivalent to the

Ornstein–Zernike equation. An e↵ect of the physical cluster formation on a feature of a

fluid can be estimated using the integral equation system.
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2. Pair connectedness for estimating physical cluster formation

(a) Correlation functions

Three-dimensional coordinates for the positions of particles in a fluid system are denoted

by ri for i particle and rj for j particle. A situation where these particles are included in the

same physical cluster is allowed. A correlation function that can play a role instead of the

pair correlation function is necessary to estimate the mean size of physical clusters. The pair

connectedness P(|ri � rj|) is an important correlation function3 when calculating the mean

size. The probability that i particle and j particle are located in the volume elements dri

at ri and drj at rj, respectively, is ⇢⇢g(rij)dridrj. The probability increases when particles

in the fluid system are prevented from moving easily. Here, rij is the distance |ri � rj|, and

⇢ is the density of particles for a uniform distribution. Thus, the mean number of particles

within a macroscopic volume V equals V ⇢.

The magnitude of g(rij) is proportional to the probability that i particle in a volume

element dri is located at a distance rij far from j particle in a volume element drj. Hence,

maximum values of g(rij) should become larger when particles in a fluid system are prevented

from moving easily. The pair correlation function g(rij) is useful for knowing whether

particles in the fluid system can move easily or can be prevented from moving easily. The

use of g(rij) allows for estimating the density fluctuations for a fluid system even near the

liquid-vapor critical point. A feature of the fluid near the liquid-vapor critical point appears

to be a characteristic behavior of g(rij), which can express the degree to which particles in

the fluid system are prevented from moving easily.13,14,18

Nevertheless, the pair correlation function, g(rij), cannot simply aid in examining the

physical cluster formation. Even if a fluid is a particle system consisting of hard cores,

between which mutually attractive forces do not exist, pair correlation function g(rij) (i 6= j)

can express the degree of preventing particles from moving easily because the increasing ⇢

increases the probability ⇢⇢g(rij)dridrj. Physical clusters are, however, not formed in the

fluid.

If physical clusters are formed, then the magnitude of g(rij) is a↵ected by the physical

cluster formation. The magnitude of g(rij) includes the contribution of physical cluster

formation. If the contribution of physical cluster formation is divided from the magnitude

of g(rij), then the e↵ects of physical cluster formation can be clearly estimated.
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An f -function defined by f(rij) ⌘ e
��u(rij) � 1 specifies a particle pair that consists of

i particle at ri and j particle at rj. The use of f -functions allows the pair correlation

function g(rij) to be expressed in the form of a density expansion.9,10 For an N particle fluid

system, specific features of g(rij) are determined by N(N � 1)/2 particle pairs. Then, the

relation between two particles constituting each pair maintains one of two possibilities. One

possibility is the case that the two particles are bound to each other. The other possibility

is the case that the two particles are not bound to each other.

i) Probability that two particles interact with each other in a bound state

The Hamiltonian for describing the movements of two particles specified as a pair is given

as

H2 =
p
2

i

2mi

+
p
2

j

2mj

+ u(rij), (21)

where the mass of i particle and that of j particle aremi andmj, respectively. rij corresponds

to the relative position between i particle and j particle. The center of mass R is given by

R = (miri +mjrj)/(mi +mj).

The total momentum P carried by the center of mass is given by

P = pi + pj.

The relative velocity between i particle and j particle is given by dividing prel by the reduced

mass m̄. prel and m̄ are given by
8
><

>:

prel = (mjpi �mipj)/M,

m̄ = mimj/M,

where the total mass M is defined as

M ⌘ mi +mj.

The Hamiltonian is expressed using the kinetic energy of the center of mass P 2
/2M and

relative kinetic energy p
2

rel
/2m̄ as follows:

H2 =
P

2

2M
+

p
2

rel

2m̄
+ u(rij), (22)
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where P = |P| and prel = |prel|. Then, Eq. (22) means that the Hamiltonian is described as

H2 = H̄2(P,prel, ri, rj). Based on the assumption that particle i is located at the origin of

a coordinate, the use of the relative kinetic energy that is expressed in the polar coordinate

denoted by the parameters r, ✓,� allows H2 to be given as

H2 =
P

2

2M
+

1

2m̄

✓
p
2

r
+

p
2

✓

r2
+

p
2

�

r2 sin2
✓

◆
+ u(r), (23)

Eq. (23) indicates that the Hamiltonian is described as H2 = Ĥ2(P, pr, p✓, p�, r, ✓,�). In

Eq. (23), the second term on the right-hand side of the equation is the contribution of the

relative kinetic energy of the two particles, and the third term is the contribution of the

interactions between them. For the Hamiltonian given by Eq. (23), Q2 is denoted as

Q2 =
1

2!(2⇡h̄)6
V

Z

V

drd✓d�

Z 1

�1
dprdp✓dp�

Z 1

�1
dP exp[��Ĥ2]. (24)

If parameters p̄r, p̄✓, and p̄� are defined as p̄r ⌘ pr(�/2m̄)1/2, p̄✓ ⌘ (p✓/r)(�/2m̄)1/2 p̄� ⌘

(p�/r sin ✓)(�/2m̄)1/2, �H2 is expressed as

�H2 = �
P

2

2M
+ p̄

2

r
+ p̄

2

✓
+ p̄

2

�
+ �u(r). (25)

The use of Eq. (25) with the parameters p̄r, p̄✓, and p̄� allows Eq. (24) to be rewritten as

follows

Q2 =
V

2⇡3/2

 
2⇡

p
Mm̄

(2⇡h̄)2�

!3/2 Z 1

0

4⇡r2dre��u(r)

Z 1

�1
dp̄rdp̄✓dp̄�e

�(p̄
2
r+p̄

2
✓+p̄

2
�), (26)

According to Eq. (25), the contribution E(p) of the relative kinetic energy of the two

particles is given as

E(p) = p̄
2

r
+ p̄

2

✓
+ p̄

2

�
. (27)

�u(r) denotes the contribution of the interactions between them at each r. At each r that

allows u(r) to be negative, the situation wherein the two particles are bound to each other

by the mutually attractive force requires

p̄
2

r
+ p̄

2

✓
+ p̄

2

�
 ��u(r). (28)

The probability p(r) that the two particles are found in a bound state E(p) + �u(r)  0 is

estimated from the integration of exp[�(p̄2
r
+ p̄

2

✓
+ p̄

2

�
)] included in Eq. (26) as follows:

p(r) =
1

⇡3/2

Z

p̄2r+p̄
2
✓+p̄

2
���u(r)

dp̄rdp̄✓dp̄�e
�(p̄

2
r+p̄

2
✓+p̄

2
�). (29)
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Then, the integration of exp[�(p̄2
r
+ p̄

2

✓
+ p̄

2

�
)] is limited by p̄r, p̄✓, and p̄� that satisfy Eq.

(28). If Eq. (29) is rewritten through the use of E(p), then the following equation is obtained

for p(r)

p(r) =
2

⇡1/2

Z ��u(r)

0

e
�E

E
1/2dE

=
2

⇡1/2


�

✓
3

2

◆
� �

✓
3

2
,��u(r)

◆�
, (30)

where �(⌧, t) is the incomplete gamma function expressed by �(⌧, t) =
R1
t

e
�y
y
⌧�1dy.2

At each r that allows u(r) to be negative, the situation wherein the two particles are not

bound requires

p̄
2

r
+ p̄

2

✓
+ p̄

2

�
> ��u(r). (31)

The probability p̄(r) that the two particles are found in an unbound state E(p) + �u(r) > 0

is estimated as follows:

p̄(r) =
1

⇡3/2

Z

p̄2r+p̄
2
✓+p̄

2
�>��u(r)

dp̄rdp̄✓dp̄�e
�(p̄

2
r+p̄

2
✓+p̄

2
�) (32)

=
2

⇡1/2
�

✓
3

2
,��u(r)

◆

=1� p(r). (33)

At each r that allows u(r) to be positive, Eq. (31) is always satisfied for arbitrary values

of three parameters p̄r, p̄✓, and p̄�. The two particles are not bound at each r that allows

u(r) to be positive. Then, the following relations is satisfied:
8
><

>:

p̄(r) = 1, (at each r satisfying 0 < u(r))

p(r) = 0, (at each r satisfying 0 < u(r))
(34)

ii) Physical cluster formed as an ensemble of particles linked with each other by f
+ bonds

An f -function f(rij) specifies i particle at ri and j particle at rj. Then, p(r)
��
r=rij

, which

is obtained from Eq. (30), denotes the probability that i particle and j particle, which

are specified by f(rij), are bound to each other. The use of the probability p(rij) allows

f -function f(rij) to be given as the sum of the f
+-function and the f

⇤-function:

f(rij) = f
+(rij) + f

⇤(rij), (35)
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where f
+(rij) and f

⇤(rij) are expressed as

f
+(rij)⌘ p(rij)e

��u(rij) (36)

f
⇤(rij)⌘ [1� p(rij)]e

��u(rij) � 1. (37)

In each of diagrams found from the density expansion of g(r12), an f -bond corresponds

to an f -function. Each of the f - functions in its density expansion is substituted with the

sum of an f
+-function and an f

⇤-function, which is exemplified by f(rij) = f
+(rij)+f

⇤(rij).

As a result, each diagram is expressed as the sum of diagrams that are formed by f
+ bonds

specified by f
+-functions and f

⇤ bonds specified by f
⇤-functions. The sum includes specific

diagrams. In each of these diagrams, one root point r1 is connected to the other root point r2

through at least one path of all f+-bonds given as a product of f+-functions. The diagrams

denote that the two particles corresponding to the two root points are part of the same

physical cluster.2 Substituting each f -function with each sum f
+ + f

⇤ allows a correlation

function corresponding to pair connectedness P(r12) to be extracted from g(r12) expressed

by the density expansion.3 Thus, the pair connectedness P(r12) enables us to directly analyze

the physical cluster formation.

iii) Relation of pair connectedness P(r12) with pair correlation function g(r12)

Pair connectedness P(r12) is given by the sum of the contributions obtained from every

diagram that has at least one path of all f+-bonds between the root points labeled as 1 and

2. The use of P(r12) allows ⇢⇢P(r12)dr1dr2 to express the probability that particle 1 in dr1

located at r1 and particle 2 in dr2 located at r2 belong to the same physical cluster.3 If the

probability that particle 1 and particle 2 belong to di↵erent physical clusters is expressed as

⇢⇢D(r12)dr1dr2,3 then the pair connectedness P(r12) is related to g(r12) as follows:

g(r12) = P(r12) +D(r12), (r12 ⌘ |r1 � r2|). (38)

According to g(r12), the probability that particle 1 in a volume element dr1 at r1 is located at

a distance r12 from particle 2 located in a volume element dr2 at r2 is given by ⇢⇢g(r12)dr1dr2

for a uniform fluid in which ⇢�V at r1 is equal to ⇢�V at r2 on average for a microscopic

volume �V . Then, the probability that particle 1 and particle 2 are in dr1 at r1 and in dr2 at

r2, respectively, is the sum of two contributions. One of the two contributions corresponds

to the probability that both particle 1 in volume element dr1 at r1 and particle 2 in volume
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element dr2 at r2 belong to the same physical cluster. The other contribution corresponds

to the probability that particle 1 in volume element dr1 at r1 and particle 2 in volume

element dr2 at r2 do not belong to the same physical cluster. The former is given by

⇢⇢P(r12)dr1dr2, and the latter is given by ⇢⇢D(r12)dr1dr2. Therefore, ⇢⇢g(r12)dr1dr2 must

satisfy the following relation:

⇢⇢g(r12)dr1dr2 = ⇢⇢P(r12)dr1dr2 + ⇢⇢D(r12)dr1dr2.

This formula indicates that variations in the thermodynamic behavior of a fluid system

owing to variations in the temperature are dominated by variations in the magnitude of

D(r12) if a high-temperature condition prevents the formation of physical clusters. The

magnitude of D(r12) depends on the number of particles that are categorized as particles

linked through each path that includes f
⇤-bonds. Particles linked through each path that

includes f ⇤-bonds are either particles that do not participate in the physical cluster formation

or particles that do not belong to the same physical cluster. By contrast, the magnitude of

P(r12) depends on the number of particles that participate in the physical cluster formation

and are linked by paths of f+-bonds.

iv) Features of P(r12)

Near or below the liquid-vapor critical point, e↵ects of the physical cluster formation on

the thermodynamic behavior should not be ignored. Then, unless particles contributing to

the magnitude of P(r12) can microscopically and homogeneously mix with particles con-

tributing to the magnitude of D(r12), a correlation between the behaviors of the former and

latter particle groups must occur. Phenomena similar to the above correlation can be found

from computer simulations of supercooled liquids. According to the computer simulations,

particles having low mobility cannot microscopically and homogeneously mix with those

having high mobility; hence, the particles participate in cooperative motion in structural

relaxation.29 Such cooperative motion can also be observed in colloidal suspensions.30–32

In every hard-sphere fluid system, cooperative motion similar to the above examples

should not exist. Because of Eq. (34), every hard-sphere fluid system is characterized by a

pair correlation function expressed as
8
><

>:

g(r12) = D(r12)

P(r12) = 0 for 0  u(r12).
(39)
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The density fluctuations in a hard-sphere fluid system are only simply reduced as the density

of hard spheres increases. This fact can be confirmed even using the equation of state

obtained from the PY approximation.9,10 An increase in the density of hard spheres limits

the motion of hard spheres. This e↵ect causes the above behavior.

If the contribution of mutually attractive forces between particles on the formation of

specific particle configurations is not ignored, then a fluid system should be characterized

by the pair correlation function expressed by
8
><

>:

g(r12) = P(r12) +D(r12)

P(r12) 6= 0 for u(r12) < 0.
(40)

When this fluid system is maintained near the critical point, mutually attractive forces

between particles cause the density fluctuations to reach a maximum value with an increase

in the density of particles. After reaching the maximum value, the density fluctuations

are gradually reduced as the density of particles increases.12,13 In a fluid system where

mutually attractive forces between particles is not ignored, the magnitude of P(r12) should

not be ignored near the critical point. Then, the behavior of g(r12) is revealed via the sum

P(r12) +D(r12).

(b) Mean size S of physical clusters

Physical clusters contributing to the gas-liquid phase transition naturally contribute to

the transition from the liquid state of a fluid to its solid state as one of phenomena caused

by the growth of physical clusters. Every physical cluster is formed from particle pairs

characterized as follows: each particle pair consists of two particles interacting with each

other in a bound state in which the contribution of mutually attractive forces between

them exceeds the contribution of their relative kinetic energy. An increase in the number

of particles interacting in unbound states increases the magnitude of D. The correlation

function D is that characterized by pairs of particles having a large relative momentum. An

increase in the number of particle pairs interacting in bound states increases the magnitude

of P . The pair connectedness P is a correlation function characterized by pairs of particles

having a small relative momentum. The use of P enables the mean size S of physical clusters

to be estimated.

In accordance with Kirkwood and Bu↵,33 pair correlation function g(r) has a normaliza-
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tion given as

1

V

Z

V

g(r)dr =
hNi � 1

V ⇢
+

1

V 2

1

⇢2


hNNi � hNihNi

�
, (41)

where hNi is the mean number of particles within volume V . The dependence of g(r) on V

is negligible for macroscopic V , and the dependence of hNi/V on V and the dependence of

(hNNi� hNihNi)/V on V are also negligible. Thus, Eq. (41) in the limit V ! 1 results in
Z

V

g(r)dr/V = 1.

This relation, along with Eq. (38), requires the normalization for the pair correlation function

to be expressed as

lim
V!1


1

V

Z

V

P(r)dr+
1

V

Z

V

D(r)dr

�
= 1. (42)

Mean size S of physical clusters can be estimated using P(r12). Equilibrium number

ns of physical clusters consisting of s particles can be related to the pair connectedness P .

According to the formula given by Coniglio et al.,3 the relation between ns and P is given

as

X

1s

s(s� 1)ns = ⇢⇢

Z

V

Z

V

P(|r1 � r2|)dr1dr2. (43)

Factor
P

s
sns found in Eq. (43) can be related to the density ⇢ of particles in the volume

V as

⇢ = [1/V ]
X

s

sns.

The mean physical cluster size S is given as

S =
X

s

s

✓
snsP
s
sns

◆

=

✓X

s

s
2
ns

◆✓X

s

sns

◆�1

.

This formula and
P

s
sns = V ⇢ allow Eq. (43) to be rewritten as

S = 1 + ⇢

Z

V

P(r)dr. (44)

The percolation of physical clusters occurs in a fluid system at the percolation threshold.

The use of Eq. (44) allows for the examination of whether physical clusters in the fluid system
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are in the percolation state. The critical condition at which the mean physical cluster size S

given by Eq. (44) reaches infinity corresponds to the percolation threshold. The percolation

of physical clusters in a macroscopic V maintained by a fluid system a↵ects the dependence

of S on V . If the percolation of physical clusters does not occur in V , then S should be

su�ciently independent of V . When percolated physical clusters exist in macroscopic sizes

in V , S should depend on V .
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3. E↵ects of the physical cluster growth

(a) Occurrence of macroscopically sized physical clusters

The integral of P(r) found in Eq. (42) is related to the mean size S of physical clusters

based on Eq. (44). If the percolation of physical clusters does not occur in a macroscopic V

maintained by a fluid system, then S [which is estimated for the fluid system by Eq. (44)]

should be su�ciently independent of V . Hence, the limit V ! 1 does not a↵ect S. Eq.

(44) can be rewritten as follows:

S � 1

V
= ⇢

1

V

Z

V

P(r)dr. (45)

Thus, the limit V ! 1 requires that the right-hand side of Eq. (45) satisfy (S � 1)/V = 0.

Therefore, Eq. (45) allows limV!1(⇢/V )
R
V
P(r)dr = 0 to be satisfied. Moreover, Eq.

(42) requires (1/V )
R
V
D(r)dr = 1 to be satisfied in the limit V ! 1. Based on these

consequences, the normalization conditions that are given in the limit V ! 1 are described

as
8
><

>:

limV!1(1/V )
R
V
P(r)dr = 0,

limV!1(1/V )
R
V
D(r)dr = 1.

If the percolation of physical clusters occurs in a macroscopic V maintained by the fluid

system, then the mean size S that is estimated for the fluid system from the use of Eq. (44)

should be dependent on V . Then, the magnitude of [(S � 1)/V ] can have a finite nonzero

value. Eq. (42) requires conditions given as

8
>>>><

>>>>:

0 < limV!1(1/V )
R
V
P(r)dr  1,

0  limV!1(1/V )
R
V
D(r)dr < 1,

limV!1(1/V )
R
V
P(r)dr+ limV!1(1/V )

R
V
D(r)dr = 1.

If a state of the fluid is in the immediate vicinity of the liquid-solid transition point

where relation 0 < (⇢sd � ⇢
lq)/⇢sd ⌧ 1 (⇢sd denotes ⇢ in a solid state, and ⇢

lq denotes

⇢ in a liquid state) is satisfied, then almost all physical clusters should hold macroscopic

sizes in V . The dependence of S on V should be characterized by S/V ⇡ ⇢
sd, which

corresponds to the case that the growth of physical clusters reaches the limit. Eq. (45)

results in (1/V )⇢
R
V
P(r)dr ⇡ ⇢

sd in the limit V ! 1. According to this case, Eq. (42)
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allows (1/V )
R
V
D(r)dr ⇡ 0 to be satisfied in the limit V ! 1. Based on these consequences,

the normalization conditions that are given in the limit V ! 1 are described as
8
><

>:

limV!1(1/V )
R
V
P(r)dr ⇡ 1,

limV!1(1/V )
R
V
D(r)dr ⇡ 0.

In a state specified by (1/V )
R
V
D(r)dr = 0, the fluid does not include particle pairs specified

by each pair characterized as two particles interacting in an unbound state wherein the

contribution of the relative kinetic energy of the pair particles exceeds the contribution of

a mutually attractive force between them. A state specified by (1/V )
R
V
D(r)dr ⇡ 0 means

that the fluid does not have features found in the liquid state. The growth of physical

clusters that proceeds in macroscopic V beyond the percolation threshold can contribute to

compelling the phase transition from the liquid state of the fluid to the solid state. A specific

state wherein (1/V )
R
V
D(r)dr ⇡ 0 is satisfied should be found at least near the triple point.

(b) Behavior of correlation functions

The pair correlation function behaves as g(|r1 � r2|) ⇡ 1 for a large |r1 � r2|, which

corresponds to the case that one of two particles corresponding to the location at r1 in a

fluid system is widely separated from the other corresponding to the location at r2. In the

limit V ! 1 and r ! 1, it behaves as g(r) = 1.2 This requires the behaviors of the two

correlation functions to be restricted by the following relation:

P(r) +D(r) ⇡ 1, (1 ⌧ r/�), (46)

Then, the value of � is restricted by the relation r < �, which is satisfied at each r where

the contribution of the repulsive force between two particles exceeds the contribution of the

mutually attractive force between them. If � is the hard-core diameter of each particle, then

the following relation is satisfied:
8
>>>><

>>>>:

P(r) = 0, (r < �),

D(r) = 0, (r < �),

g(r) = 0, (r < �).

(47)

For a large r (satisfying 1 ⌧ r/�), the behaviors of P(r) and D(r) are restricted based on

Eq. (46). Under the condition that no percolation of physical clusters occurs, the physical
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meanings of the two correlation functions and their behavior given by Eq. (46) require the

behaviors of P(r) and D(r) at a large r to be expressed by
8
>>>><

>>>>:

limr!1 P(r) = 0,

limr!1 D(r) = 1

limr!1 g(r) = limr!1 D(r).

(48)

The relations given by Eq. (48) should be satisfied even at the percolation threshold, although

they are not correct beyond that point.

The above relations must be modified correctly if macroscopically sized physical clusters

in the fluid can increase beyond the percolation threshold. Then, the magnitude of P(r)

should have a nonzero finite value even for a large r. Hence, in a specific condition that

allows macroscopically sized physical clusters to increase, the restriction given by Eq. (46)

should require P(r) and D(r) to behave as
8
>>>><

>>>>:

0 < limr!1 P(r)  1,

0  limr!1 D(r) < 1,

limr!1[P(r) +D(r)] = 1.

If macroscopically sized physical clusters in the fluid can continue to grow beyond the

percolation threshold, then particles that contribute to the magnitude of D(r) should de-

crease toward zero. At the final stage of the physical cluster growth, the existence of many

macroscopically sized physical clusters requires the two correlation functions to behave as

follows:
8
>>>><

>>>>:

limr!1 P(r) ⇡ 1,

limr!1 D(r) ⇡ 0,

limr!1 g(r) ⇡ limr!1 P(r).

The above relations should be satisfied at least near the triple point where relation

(1/V )
R
V
D(r)dr ⇡ 0. The transition from the liquid state of the fluid to the solid state at

least at the triple point should be aided by the enhancement and development of macro-

scopically sized physical clusters in macroscopic V .

(c) Integral equations for correlation functions including the pair connectedness

34



Pair connectedness P(rij) ( rij ⌘ |ri � rj|) is given as the sum of the contributions

obtained from every diagram that has at least one path of all f+ bonds between the root

points corresponding to the two coordinates, ri and rj. Pair correlation function g(rij) is

given as the sum of contributions obtained from every diagram formed by paths of f -bonds

between the root points, according to the density expansion of g(rij).9,10 Moreover, Eq. (15)

with Eq. (17) and (16) requires g(rij) to be given the sum of the two contributions that

correspond to the contribution of the nodal diagrams having nodal points and the other

contribution of the non-nodal diagrams having no nodal point. A nodal point is a specific

field point in a diagram, and missing the field point in the diagram means that the diagram

is separated into two groups, i.e., one group including a root point and the other group

including the other root point.

Based on the example of g(rij), the diagrams contributing to P(rij) are separated into

two groups. One consists of the nodal diagrams of f+-bonds and the other is the remaining

group consisting of the non-nodal diagrams of f+-bonds. This means that P(rij) is expressed

as

P(rij) = N
+(rij) + C

+(rij),

where N
+(rij) is the contribution of all nodal diagrams having at least one path of all f+-

bonds between the two root points, and C
+(rij) is the contribution of all non-nodal diagrams

having at least one path of all f+-bonds between the two root points.

In the Ornstein–Zernike equation,9 the contribution of all the non-nodal diagrams consist-

ing of paths of f -bonds between the two root points corresponds to direct correlation function

c(rij). According to the Ornstein–Zernike equation, g(rij) � 1 is equal to N(rij) + c(rij),

in which N(rij) represents the contribution of all the nodal diagrams consisting of paths

of f -bonds between the two root points, and N(rij) is given as the convolution integral

⇢
R
c(rik)[g(rkj)� 1]drk, which is simplified using rik ⌘ |ri � rk| and rkj ⌘ |rk � rj|.

If an analogy with the Ornstein–Zernike equation is assumed, then the convolution inte-

gral of the product of C+(rik) and P(rkj) should yield N
+(rij) = ⇢

R
C

+(rik)P(rkj)drk. This

consequence and P(rij) = C
+(rij)+N

+(rij) result in an integral equation that is required to

estimate P(rij).3 Hence, the pair connectedness P(rij) is given as a solution of the integral

equation expressed as

P(rij) = C
+(rij) + ⇢

Z

V

C
+(rik)P(rkj)drk, (49)
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where C
+(rij) is an unknown function. Eq. (49) has the same mathematical structure as

the Ornstein–Zernike equation, and it is used in the limit V ! 1,

An integral equation for the correlation function D(rij) can be obtained by considering

the Ornstein–Zernike equation. Equation (38) allows the Ornstein–Zernike equation to be

expressed as

P(rij) +D(rij)� 1 = c(rij) + ⇢

Z

V

c(rik)P(rkj)drk

+ ⇢

Z

V

c(rik)[D(rkj)� 1]drk. (50)

This equation must involve the contribution of the pair connectedness P , which should be

estimated by Eq. (49). If the contribution of non-nodal diagrams that do not include the

paths of all f+-bonds between i and j particles is expressed as C⇤(rij), then direct correlation

function c(rij), which represents the contribution of all non-nodal diagrams consisting of

paths of f -bonds between the two root points, must be equal to the sum of C⇤(rij) and

C
+(rij). Thus, c(rij) is expressed as

c(rij) = C
+(rij) + C

⇤(rij). (51)

Then, C+(rij) is the contribution of all non-nodal diagrams having at least one path of all

f
+-bonds between the two root points. The ensemble of particle pairs that contribute to

the magnitude of C+(r) is the same as that contributing to P(r). Similarly, the ensemble

of particle pairs that contribute to the magnitude of C⇤(r) is the same as that contributing

to D(r).

If Eq. (49) is considered, then the substitution of Eq. (51) into Eq. (50) results in an

integral equation that is equivalent to both an integral equation derived by Stell28 and

another one derived by Chiew et al.6 This integral equation is expressed as

H(rij) =C
⇤(rij) + ⇢

Z

V

C
⇤(rik)P(rkj)drk

+⇢

Z

V

C
+(rik)H(rkj)drk + ⇢

Z

V

C
⇤(rik)H(rkj)drk, (52)

where

H(rij) ⌘ D(rij)� 1. (53)

In Eq. (52), C⇤(rij) is an unknown function. The integral equation system composed of Eqs.

(49) and (52) is equivalent to the Ornstein–Zernike equation, which has been successful for

examining a fluid in both the gas and liquid states.
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According to Eq. (51), an integral equation system consisting of Eqs. (49) and (52)

is equivalent to the Ornstein–Zernike equation. Equation (49) contributes to estimating

the formation of physical clusters, and Eq. (52) contributes to estimating an e↵ect of the

physical cluster formation. In fact, the second term and the third term on its right-hand side

in Eq. (52) represent a way to induce an e↵ect of the formation of physical clusters on the

correlation function H. An e↵ect of these terms should play a role in explaining phenomena

owing to the formation of physical clusters.

For a specific fluid system in which no physical cluster formation is expected, Eq. (52) is

simplified as

H(rij) = C
⇤(rij) + ⇢

Z

V

C
⇤(rik)H(rkj)drk. (54)

When the gas phase of a fluid and the liquid phase of the fluid are in equilibrium, Eq.

(54) is applicable to examining the behavior of this gas phase, and Eq. (52) is applicable to

examining the behavior of that liquid phase. In addition, when
��P(r)/D(r)

�� ⌧ 1 is satisfied,

the following relation can occur:

���⇢
Z

V

C
⇤(rik)P(rkj)drk + ⇢

Z

V

C
+(rik)H(rkj)drk

��� ⌧
���H(rij)

���. (55)

Eq. (54) can be an appropriate approximation even for a fluid involving the formation of

physical clusters if the condition |P(r)/D(r)| ⌧ 1 is satisfied for the fluid.
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4. Each closure scheme for solving each integral equation

( a ) Two closure schemes

According to the PY approximation, an approximate relation between P(rij) and C
+(rij)

can be given within the e↵ective range, where the contribution of u(rij) to a mutually

attractive force, which makes particle i interact with particle j, cannot be neglected.3 An

approximate relation between D(rij) and C
⇤(rij) can also be given within the e↵ective range.

As a result, an aid of the PY approximation allows for the characterization of P(rij) owing

to a pair potential. Moreover, it allows for the characterization of D(rij) owing to a pair

potential.

The pair correlation function g
PY(rij) owing to the PY approximation is expressed as

g
PY(rij)e�u(rij) = 1 + N(rij). If relations e

��u(rij) = f
+(rij) + f

⇤(rij) + 1 and N(rij) =

N
+(rij) +N

⇤(rij) are both considered, the the PY approximation is rewritten as

g
PY(rij) =f

+(rij)
h
1 +N

+(rij) +N
⇤(rij)

i
+
h
f
⇤(rij) + 1

i
N

+(rij)

+
h
f
⇤(rij) + 1

ih
1 +N

⇤(rij)
i
. (56)

Equation (38) requires that the right-hand side of Eq. (56) be formed by the sum of the

terms contributing to P(rij) and the terms contributing to D(rij). If three relations such

as P(rij) + D(rij) ⇡ g
PY(rij), P(rij) = C

+(rij) + N
+(rij), and an expression of the PY

approximation g
PY(rij)e�u(rij) = 1+N(rij) with N(rij) = N

+(rij) +N
⇤(rij) are considered,

then Eq. (56) is allowed to be divided into two formulae. Thus, one of the two formulae is

P(rij) = f
+(rij)g

PY(rij)e
�u(rij) + [f ⇤(rij) + 1][P(rij)� C

+(rij)], (57)

and the other is

D(rij) = [f ⇤(rij) + 1][gPY(rij)� c
PY(rij)� P(rij) + C

+(rij)], (58)

where cPY(rij) is the direct correlation function owing to the PY approximation and is given

as cPY(rij)/(1� e
�u(rij)) = g

PY(rij).

If Eqs. (36) and (37) are considered with Eq. (30), then Eq. (57) can be rewritten as

P(rij) +
2�[3/2, w(rij)]

⇡1/2e�u(rij) � 2�[3/2, w(rij)]
C

+(rij)

=
2{�(3/2)� �[3/2, w(rij)]}e�u(rij)

⇡1/2e�u(rij) � 2�[3/2, w(rij)]

c
PY(rij)

1� e�u(rij)
, (59)
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where w(rij) ⌘ ��u(rij)✓[��u(rij)] (✓[x] = 1 (0  x), ✓[x] = 0 (0 > x)). Eq. (59) can be

used as a closure scheme for Eq. (49) if cPY
ij

(r) is given.

If Eqs. (38) and (51) are considered, then Eq. (58) can be rewritten as

D(rij) =
2�[3/2, w(rij)]

2�[3/2, w(rij)]� ⇡1/2e�u(rij)
C

⇤(rij). (60)

An estimate of D(rij) is allowed from considering Eq. (60) as a closure scheme for Eq. (52) if

Pij(r) is estimated with the use of Eq. (49). Although Eqs. (59) and (60) can be used when

either �u(rij) < 0 or �u(rij) > 0, �u(rij) > 0 requires Pij(r) = 0, C+(rij) = 0, D(rij) 6= 0,

and C
⇤(rij) 6= 0.

Eqs. (59) and (60) enable P(rij) and D(rij) to be characterized by a pair potential if

c
PY(rij), C+(rij), and C

⇤(rij) are given. Moreover, Eqs. (59) and (60) suggest that separating

P(rij) from g(rij) allows a pair potential characterizing P(rij) to be made di↵erent from a

pair potential characterizing D(rij). Even if a pair potential controlling the behavior of

pair particles can depend on relative momenta of particles, the use of Eqs. (59) and (60)

enables P(rij) and D(rij) to be estimated. A pair potential in a situation ( I ) where the

contribution of a mutually attractive force between pair particles exceeds the contribution

of the relative kinetic energy between them can di↵er from that in a situation ( II ) where

the contribution of the relative kinetic energy between them exceeds the contribution of the

mutually attractive force between them. The di↵erence between a pair potential in situation

( I ) and that in situation ( II ) may occur in a fluid system consisting of molecules that can

form hydrogen bonds between them.

( b ) Necessity of distinguishing between u
+ and u

⇤

When the integral equation system given by Eqs. (49) and (52) is solved, the character-

istics of attractive forces that act between particles contributing to the magnitude of P(rij)

are permitted to di↵er from the characteristics of attractive forces that act between particles

contributing to the magnitude of D(rij). A pair potential u+(rij) that can characterize the

former attractive forces can di↵er from a pair potential u⇤(rij) that can characterize the

latter attractive forces.

Attractive forces among particles can depend on bond angles, torsional angles, and the

coordination number of particles.34,35 Many-body e↵ects are generated as the dependence of

attractive forces on bond angles, torsional angles, and the coordination number of particles.
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If pair potentials are made to function as a model for simulating e↵ects of the attractive

forces, then the features of the pair potentials must be a↵ected by the many-body e↵ects.

The simplest model is one that allows the mean features of the many-body e↵ects to be

treated as spherically symmetric contributions such as u+(rij) and u
⇤(rij). Such pair poten-

tials that should be derived as the model must characterize the mean features of attractive

forces acting among particles.

At a specific temperature that cannot allow a fluid to maintain a locally and transiently

ordered microscopic structure, the many-body e↵ects should be ignored even in a dense gas

state. If a locally and transiently ordered microscopic structure is found even in the gas

state of a fluid, then the many-body e↵ects should not be ignored. The many-body e↵ects

can depend on the degree of the kinetic energies of particles because attractive forces can be

a↵ected by bond angles, torsional angles and the coordination number of particles. Then,

the simplest model for examining e↵ects of such attractive forces is one that allows u+(rij)

to di↵er from u
⇤(rij).

( c ) Simple closure scheme in the MSA

The use of the closure scheme given by Eq. (59) is not practical as a way to solve Eq. (49)

analytically. Fortunately, Eq. (49) has the same mathematical structure as the Ornstein–

Zernike equation. The Ornstein–Zernike equation can be solved analytically for some fluids

if the MSA36 is used. In the MSA, the direct correlation function c(r) is given as the sum

of the short-range contribution c
0(r) and the long- range contribution ��u(r). This means

that c(r) is expressed as

c(r) = c
0(r)� �u(r) (61)

c
0(r) = 0, for r > �, (62)

where � is the diameter of the hard core of a particle. If C+(r) is given in the same form as

c(r) given in the MSA, then the procedure for solving Eq. (49) can be simplified, as found

in the procedures for solving the Ornstein–Zernike equation in the MSA.

i ) Recursive solution for the Ornstein–Zernike

According to the MSA,10,36 the direct correlation function, c(r), outside of the range in

which the contribution of the hard-core interaction is e↵ective, remains e↵ective within the
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range where the magnitude of u(r) cannot be neglected. c(r) decays to zero as rapidly as

��u(r), which retains a microscopic feature. This means that the ranges within which the

correlation functions C+(r) and C
⇤(r) are not zero remain microscopic sizes because of Eq.

(51). The correlation function g(r) � 1 decays to zero much more slowly than c(r).13,18

Thus, the behavior of g(r) � 1 is di↵erent from the behavior of c(r), which has a tendency

to maintain the microscopic feature.

This is demonstrated by the solution that is obtained by solving the Ornstein–Zernike

equation recursively. The solution is given as a function of r as the distance between particle

1 and particle 2. This is expressed by

g(r)� 1 =c(r) + ⇢

Z

V

c(r13)c(r32)dr3

+⇢⇢

Z

V

Z

V

c(r13)c(r34)c(r42)dr3dr4 + · · · , (63)

where the convolution integrals denote contributions from particle 3, particle 4, · · · , which

are distributed around particle 1 and particle 2 that exist away from each other at a distance

r. Contributions from particle 3, particle 4, · · · , make the behavior of g(r) � 1 di↵er from

the behavior of c(r).

Pair correlation function g(r), which must satisfy the Ornstein–Zernike equation, in-

volves the contributions of many particles, which are expressed as the convolution integrals

of c(r13)c(r34) · · · c(rm2) (m = 3, 4, 5, · · · ) found in Eq. (63). This means that the pair cor-

relation function g(r), derived from the use of an approximate c(r), involves contributions

of many particles, even when the approximate c(r) is obtained from the contributions of

limited principal particles. Even without the use of an accurate c(r) obtained from the

contributions of all the particles that should be considered, the mathematical procedure for

making g(r) satisfy the Ornstein–Zernike equation makes it possible to address the necessity

of considering the contributions of many particles.

ii ) Concept for the MSA

When the relation between the distance r and the hard-core diameter � of each particle

satisfies r  �, relation g(r) � 1 = �1 should be satisfied. Hence, Eq. (63) requires c(r)

to be negative even for r/� ⇡ 1 if 0 < r/� < 1 is satisfied. Every convolution integral in

Eq. (63) cannot always positively contribute to the magnitude of g(r) � 1. Nevertheless,

the magnitude of g(r) � 1 can remain a positive finite value at a large r that is out of
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the e↵ective range where c(r) 6= 0. This means that convolution integrals that positively

contribute to the magnitude of g(r)�1 are dominant in Eq. (63) at a large r, where c(r) ⇡ 0

is satisfied. Thus, the manner in which the direct correlation function c(r) contributes to

the magnitude of g(r)� 1 denotes that the long-range contribution characterized for � < r

di↵ers from the short-range contribution characterized for r  �. This behavior agrees with

the concept for the MSA, i.e., that c(r) is given as the sum of the short-range contribution

and the long-range contribution.

iii ) Relations of C+(r) and C
⇤(r) with c(r)

The direct correlation function c(r) is the contribution of all non-nodal diagrams consist-

ing of paths of f -bonds between the two root points. Similarly, C+(r) is the contribution of

all non-nodal diagrams having at least one path of all f+-bonds between the two root points.

C
⇤(r) is the contribution of non-nodal diagrams that do not include paths of all f+-bonds

between the two root points. The similarity among these diagram structures suggests that

both the behavior of C+(r) and the behavior of C⇤(r) should be similar to the behavior of

c(r). According to the MSA,36 direct correlation function c(r) is given by Eqs. (61) and (62),

and outside the e↵ective range of the hard-core potential, c(r) behaves as the sum of the

long-range contribution c(r)/(��u(r)) = 1 and the short-range contribution c
0(r) = 0. Ac-

cording to the similarity between c(r) and C
+(r) with respect to the diagram structures, the

behavior of C+(r) is given as the sum of the short-range contribution expressed as C0+(r)

and the long-range contribution to C
+(r). According to the similarity between c(r) and

C
⇤(r) with respect to the diagram structures, the behavior of C⇤(r) is given as the sum of

the short-range contribution expressed as C0⇤(r) and the long-range contribution to C
⇤(r).

( d ) Behavior of C+(r) found for 0 < ��u(r) ⌧ 1 at a large r.

The behavior of C+(r) at a large r can be readily determined. If the distance r be-

tween particle 1 and particle 2 is su�ciently large, then |�u(r)| should be su�ciently small.

Equation (30) can then be approximated as

p(r) =
4

3
p
⇡
(��u(r))3/2 �

4

5
p
⇡
(��u(r))5/2

+
2

7
p
⇡
(��u(r))7/2 + · · · . (64)
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If p(r) given by Eq. (64) is substituted into Eq. (59), then the following formula is obtained:

C
+(r) =

c
PY(r)

��u(r)

h 4

3
p
⇡
(��u(r))3/2 �

22

15
p
⇡
(��u(r))5/2 + · · ·

i

+P(r)
h
��u(r)�

4

3
p
⇡
(��u(r))3/2 �

1

2
(��u(r))2 +

32

15
p
⇡
(��u(r))5/2 + · · ·

i
. (65)

A long-range contribution to C
+(r) is obtained from Eq. (65) by considering an assump-

tion that is made for 1 < r/� as
8
><

>:

P(r) ⇠ [��u(r)]⌫ with 1  ⌫,

0 < ��u(r) ⌧ 1.

Here, � is the diameter of the hard-core of each particle. At the minimum, relation

P(r)/[g(r)�1]  1 is always satisfied because of g(r)�1 = P(r)+D(r)�1 and 0  D(r)�1.

This relation is consistent with Eq. (48) that is satisfied without the percolation of physical

clusters. Thus, the magnitude of P(r) for 0 < ��u(r) ⌧ 1 should satisfy

g(r)� 1

��u(r)
�

P(r)

��u(r)
.

The MSA yields cPY(r)/[��u(r)] = 1 for 1 < r/�. Then, a general assumption limr!1 u(r) =

0 allows gPY(r) = c
PY(r)/{1� exp[�u(r)]} owing to the PY approximation to result in

lim
r!1

g(r)� 1

��u(r)
= lim

r!1

1

��u(r)

h
c
PY(r)

1� exp(�u(r))
� 1

i
=

1

2
.

Therefore, the above general assumption allows the following relation to be derived

1

2
� lim

r!1

P(r)

��u(r)
� 0.

This result denotes that the behavior of P(r) for 1 < r/� and 0 < ��u(r) ⌧ 1 is expressed

as P(r) ⇠ [��u(r)]⌫ with 1  ⌫. Owing to this behavior of P(r), a long-range contribution37

to C
+(r) is found from Eq. (65) as

C
+(r) ⇡

4

3
p
⇡

⇥
��u(r)

⇤3/2
, (for 1 < r/� and 0 < ��u(r) ⌧ 1). (66)

( e ) Behavior of P(r) found for 0 < ��u(r) ⌧ 1.

The expansion of Eq. (59), which is obtained in powers of ��u(r) for |�u(r)| ⌧ 1 based

on the substitution of p(r) expressed by Eq. (64), can be given instead of Eq. (65) as follows

P(r) =�
c
PY(r)

��u(r)

h 4

3
p
⇡
(��u(r))1/2 +

16

9⇡
(��u(r)) +

⇣ 64

27⇡3/2
�

4

5
p
⇡

⌘
(��u(r))3/2 + · · ·

i

+
C

+(r)

��u(r)

h
1 +

4

3
p
⇡
(��u(r))1/2 +

⇣1
2
+

16

9⇡

⌘
(��u(r)) + · · ·

i
. (67)

43



The use of Eq. (66), which is obtained under the condition that no percolation of physical

clusters occurs, enables Eq. (67) to yield an approximate behavior of P(r) for |�u(r)| ⌧ 1. If

relation c
PY(r)/(��u(r)) = 1 given for the MSA is considered at each r satisfying 1 < r/�,

then Eq. (67) allows the approximate behavior of P(r) to be expressed as

P(r) =
22

15
p
⇡
(��u(r))3/2 for 0 < ��u(r) ⌧ 1. (68)

P(r) given by Eq. (68) directly depends on the feature of �u(r). Then, the e↵ective range

within which �u(r) remains nonzero finite values can be microscopic. Hence, the magnitude

of P(r) given by Eq. (68) involves contributions from only limited particles. Despite this, if

each physical cluster formed in a fluid where no percolation occurs has a fractal structure,

P(r) given by Eq. (68) should represent the characteristics of the fractal structure within

the rang where �u(r) remains nonzero finite values.37 Physical clusters can grow beyond the

range that depends directly on the feature of �u(r). The physical clusters can hold a fractal

structure as discussed in II B 8.

( f ) Simple closure scheme for Eq. (49)

i ) Simple closure scheme for estimating P(r)

The similarity between the behavior of c(r) and the behavior of C+(r) with respect to

the diagram structures should allow the behavior of C+(r) to be given as the sum of the

short-range contribution expressed as C
0+(r) and the long-range contribution to C

+(r).

An approximate C
+(r) given by the sum becomes a simple closure scheme for the integral

equation given by Eq. (49). The long-range contribution to C
+(r) is given by Eq. (66).

Thus, a simple closure scheme similar to the MSA is expressed as

C
+(r) = C

0+(r) +
4

3
p
⇡
(��u(r))3/2 for �u(r) < 0, (69)

where for the short-range contribution C
0+(r) the behavior similar to c

0(r) is required ac-

cording to an analogy with the MSA. Thus, C0+(r) should be given as

C
0+(r) = 0, for �  r. (70)

The most completely short-range interaction between pair particles must be attributed to a

hard-core potential. For diameter � of the hard core of each particle, the hard-core potential

does not directly contribute to the interaction between the pair particles for �  r. Thus,

Eq. (70) should be justified as an approximate expression, according to the MSA.
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ii ) Recursive solution for P(r)

According to the MSA, c(r) decay to zero as rapidly as ��u(r), which retains a micro-

scopic feature. Eq. (69) demonstrates that C+(r) behaves in a way similar to c(r); however,

Eq. (69) requires it to decay to zero more rapidly than ��u(r). Then, the e↵ective range

of ��u(r) can remain a microscopic size. Despite this fact, P(r) can still have a finite

value that is nonzero even out of the e↵ective range. This can be explained via a recursive

solution. The solution is obtained from solving Eq. (49) recursively in the same manner as

the mathematical procedure for solving the Ornstein–Zernike equation. Thus, the integral

equation expressed by Eq. (49) has a recursive solution given as

P(r) =C
+(r) + ⇢

Z

V

C
+(r13)C

+(r32)dr3

+⇢⇢

Z

V

Z

V

C
+(r13)C

+(r34)C
+(r42)dr3dr4 + · · · . (71)

According to Eq. (71), if particle 2 is located at a distance r from particle 1, then the

probability that both particle 1 and particle 2 belong to the same physical cluster can be

increased by the contribution of other particles (3, 4, · · · ). Each term on the right-hand

side of Eq. (71) has a magnitude proportional to the above probability while depending

on the contribution of other particular particles (3, 4, · · · ). Although the first term C
+(r)

without the contribution of other particular particles is the exception, the first term is also

proportional to the probability that both particle 1 and particle 2 belong to the same physical

cluster. If the contributions of particles (3, 4, · · · ) distributed around particle 1 and particle

2 are nonnegligible, then it is possible for P(r) to remain nonzero, even out of the e↵ective

range in which C
+(r) 6= 0.

iii ) Convolution integrals synthesizing recursive solution

Each convolution integral on the right-hand side of Eq. (71) is positive because 0  C
+(r)

is satisfied everywhere because of 0  P(r) (0 < r). In Eq. (63), the convolution integrals

must not always be positive as c(r) is negative for 0 < r/�  1 because g(r) � 1 ⇡ �1

(0 < r/�  1) is satisfied. The contributions of particles (3, 4, · · · ) distributed around

particle 1 and particle 2 to P(r) seem di↵erent from their contributions to g(r). Despite

this, Eq. (63) corresponds to the sum of the contribution fromD and the contribution from P ,

according to Eq. (38). The contribution of Eq. (71) to g(r) is hidden in the expression of Eq.
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(63), although Eq. (63) is obtained from the Ornstein–Zernike equation. The contribution

of Eq. (71) to g(r) should be considered the contribution of the physical cluster formation

to g(r).

In addition, the pair connectedness P(r), which must satisfy the integral equation given

by Eq. (49), involves the contributions of many particles, which are expressed as convolution

integrals found in Eq. (71). This means that the pair connectedness P(r) derived from the

use of an approximate C
+(r) involves the contributions of many particles, even when the

approximate C
+(r) results from contributions of limited principal particles. Even without

the use of an accurate C+(r) obtained from the contributions of all the particles that should

be considered, making P(r) satisfy the integral equation given by Eq. (49) enable us to

address the necessity of considering the contributions of many particles.

( g ) Simple closure scheme for Eq. (52).

i ) Simple closure scheme for estimating H(r)

If �u(r) is positive, there is no particle pair that contributes to the magnitude of C+(r)

and then every particle pair contributes to the magnitude of C⇤(r). Even if �u(r) is negative,

then particle pairs contributing to the magnitude of C⇤(r) exist. The magnitude of C⇤(r)

results from the contribution of non-nodal diagrams that do not include paths of all f+-bonds

between the two root points 1 and 2. Particle pairs contributing to the magnitude include

particular pairs. Then, each of the particular pairs is formed by two particles interacting in

an unbound state where the contribution of the relative kinetic energy of the pair particles

exceeds the contribution of the mutually attractive force between them.

If the MSA and the behavior of P(r) given by Eq. (68) are considered, then Eq. (38) and

the PY approximation g
PY(r) = c

PY(r)/{1� exp[�u(r)]} result in

D(r)� 1 ⇡ �
1

2
�u(r) for 1 ⌧ r/�. (72)

Eq. (72) denotes the behavior of D(r) found for 0 < | � �u(r)| ⌧ 1 at a large r. Then,

particles contributing to this behavior are very limited.

The behavior of D(r)� 1 at a large r allows Eq. (60) to lead to

C
⇤(r) ⇡ ��u(r) for 1 ⌧ r/�. (73)

This is the long-range contribution to C
⇤(r). Thus, the use of Eq. (73) allows the behavior

of C⇤(r) to be approximately expressed as the sum of the short-range contribution expressed
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as C0⇤(r) and the long-range contribution to C
⇤(r) according to an analogy with the MSA.

This means that an approximation of C⇤(r) is given for either �u(r) < 0 or �u(r) > 0 by

C
⇤(r)= C

0⇤(r)� �u(r), (74)

C
0⇤(r)= 0, for r > �. (75)

The hard-core potential does not directly contribute to the interaction between them for

r � �. Thus, Eq. (75) should be justified as an approximate expression, according to the

MSA.

ii ) Recursive solution for H(r)

Eq. (75) demonstrates that C⇤(r) behaves in a way similar to c(r) and decays to zero as

rapidly as ��u(r). Then, the e↵ective range of ��u(r) can remain a microscopic size. De-

spite this fact, H(r) can still have a finite value being nonzero even out of the e↵ective range.

This can be explained via the solution that is obtained from solving Eq. (52) recursively.

The integral equation expressed by Eq. (52) has the recursive solution given as

H(r) =C
⇤(r) + ⇢

Z

V

c(r13)C
⇤(r32)dr3 + ⇢⇢

Z

V

Z

V

c(r13)c(r34)C
⇤(r42)dr3dr4 +

+⇢

Z
C

⇤(r13)P(r32)dr3 + ⇢⇢

Z

V

Z

V

c(r13)C
⇤(r34)P(r42)dr3dr4

+⇢⇢⇢

Z

V

Z

V

Z

V

c(r13)c(r34)C
⇤(r45)P(r52)dr3dr4dr5 + · · · . (76)

In Eq. (76), the convolution integrals denote the contributions from particle 3, particle 4,

· · · , which are distributed around particle 1 and particle 2 that exist away from each other

at a distance r. The contributions from particle 3, particle 4, · · · , make the behavior of

H(r) di↵er from the behavior of C⇤(r). The magnitude of H(r) can retain a nonzero finite

value at a large r out of the e↵ective range in which C
⇤(r) 6= 0.

Correlation function H(r) that satisfies Eq. (76) involves the contributions of many parti-

cles that participate in the convolution integrals. The correlation functionH(r) derived from

the use of an approximate C⇤(r) involves the contributions of many particles, even when the

approximate is obtained from the contributions of limited principal particles. Even without

the use of an accurate C⇤(r) obtained from the contributions of all the particles that should

be considered, the mathematical procedure for making H(r) satisfy Eq. (52) enables us to

address the necessity of considering the contributions of many particles.
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5. Percolation of physical clusters in Yukawa fluid specified by 
�1

( a ) Percolation phenomena

In a fluid system, each physical cluster of particles is formed via bonds between the

particles. A bond occurring for particle pair is defined as a bound state in which relation

E(p) + �u(r)  0 corresponding to Eq. (28) is satisfied for the particle pair. The bond

denotes the situation where the contribution �u(r) of the attractive interaction between

two particles exceeds the contribution E(p) of their relative kinetic energy. An ensemble of

particles linked with each other via bonds corresponds to a physical cluster.

The fluid system involves the smallest clusters formed by only a single particle, the second

smallest clusters formed by two particles, . . . , and the largest clusters formed by a number

of particles. Percolation of the physical clusters corresponds to the case that the mean size

of the physical clusters becomes comparable to the number of particles contained in the fluid

system. The percolation of physical clusters can be estimated using the pair connectedness.

A Yukawa fluid is a fluid system used to analytically estimate the percolation of physical

clusters.

An alternative definition concerning a bond formed between two particles is given as

Hill’s idea2, and the formation of a bond depends on distance r between a particle and

another particle. According to the idea, a bond is formed between the two particles if r

satisfies r  rs, for rs having a special value. A situation where E(p) > ��u(r) is satisfied

for r  rs should be distinguished from another situation where E(p)  ��u(r) is satisfied

for r  rs. However, the definition, depending on distance r does not allow us to distinguish

between the two situations. If this di�culty is avoided using a definition subjected to the

relation E(p) + �u(r)  0 for a fluid consisting of atoms or molecules, then the temperature

dependence of percolation can be satisfactory.

A Yukawa fluid system can allow particular attention to be paid to the dependence of

the liquid-phase stability on the e↵ective range of the attractive force, which occurs for a

Yukawa potential working as a pair potential between two particles forming each pair.38 Such

a Yukawa fluid system also should allow us to obtain the dependence of the generation of the

percolation state on the e↵ective range of the attractive force. In fact, the dependence of the

generation of the percolation state on the e↵ective range can be dertermined for Yukawa fluid

systems with an adjustable parameter.27 The dependence can also be determined for other
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fluid systems composed of core-soft-shell spheres with an attractive square-well potential.39

Structures of physical clusters are influenced depending on whether dominant one is the

particle-cluster aggregation or the cluster–cluster aggregation as the formation process of

physical clusters. A specific fractal structure of physical clusters is obtained from a forma-

tion process in which the cluster–cluster aggregation is dominant.40 The fractal dimension

that specifies the structure can depend on the formation process of the physical clusters.

Examining the pair connectedness should yield the fractal dimension that can characterize

the physical clusters formed in a fluid system.

The use of the pair connectedness is meaningful for analyzing phenomena that involve

the physical cluster formation. Many phenomena can be found as those depending on the

sizes of physical clusters. The electrical conductivity of liquid mercury maintained at a low

density at a temperature near the critical point Tc decreases at a rather steep gradient as

the density of mercury, ⇢Hg , decreases.
19 The di↵erence between the absorption of infrared

at a particular density ⇢
0
Hg

and that at a density below ⇢
0
Hg

increases as the temperature

decreases. This di↵erence at temperatures lower than Tc is much larger than that near Tc.21

For a Hg fluid near Tc, the real part of the dielectric constant determined using optical

reflectivity and absorption measurements increases sharply at a particular density as ⇢Hg

increases.20 To induce these phenomena, the formation of physical clusters of Hg-atoms in

each Hg-fluid can play a role. The lowest energy required for exciting an electron of each

metallic atom constituting a physical cluster decreases toward zero as the number of metallic

atoms forming the physical cluster increases. The distribution of physical cluster sizes in

a fluid consisting of metallic atoms is a factor that determines the dependence of optical

absorption on the frequency of light.24

Near liquid-vapor critical points, the viscosities of fluids exhibit an asymptotic divergence.

Berg and Moldover22 determined the critical exponent that can characterize the asymptotic

divergence by measuring the viscosities of carbon dioxide and xenon near their critical points.

In these fluids, the distribution of particles can never be uniform owing to the large density

fluctuations caused by the formation of physical clusters. Such fluctuations can result in a

characteristic increase in the viscosities of fluids near the critical points.41

An mutually attractive force between the particles for each particle pair can drive the

phase separation, and it is assisted by the physical cluster formation. The mean size of the

physical clusters can be a↵ected by the e↵ective range of the attractive force. Therefore,
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the dependence of the liquid phase stability on the e↵ective range of the attractive force38

should be related to the sizes of physical clusters.

( b ) Practical closure scheme for Yukawa fluid

In a Yukawa fluid, motion of each particle is subject to a Yukawa potential being a pair

potential that contribute to the mutually attractive force between two particles consisting

of each pair. Moreover, each particle carries the hard core of diameter �. The Yukawa

potential can, then, be described by

�uY(r) = �k0dd
e
�r

r
, (77)

where k0dd is defined by

k0dd ⌘ �Ke
�
, (78)

In Eq. (78), a parameter K corresponds to the maximum depth of the Yukawa potential. In

Eq. (77), the magnitude of �1 denotes the e↵ective range in which the pair potential can

e↵ectively contribute to the interaction between two particles.

Then, the long-range contribution to C
+(r) is caused by the Yukawa potential. This

allows Eq. (69) to yield a closure scheme corresponding to the MSA. With accompanying

Eq. (70), this closure scheme is expressed as follows:
8
><

>:

C
+(r) = C

0+(r) + 4

3
p
⇡

⇣
��uY(r)

⌘3/2

C
0+(r) = 0 (1 < r/�).

(79)

Here, mathematical procedures for analytically solving the integral equation given by Eq.

(49) require the long-range contribution to C
+(r) in Eq. (79) to be modified. The modifi-

cation allows a practical closure scheme to be given as
8
><

>:

C
+(r) = C

0+(r) + k̆d̆d̆e
�z̆r

/r

C
0+(r) = 0 (1 < r/�),

(80)

where
8
>>>><

>>>>:

k̆/� ⌘ [4/(3
p
⇡)](k0/�)3/2 exp[f⌫ ]

d̆ ⌘ d
3/2

z̆� ⌘ (3/2)� + f⌫ .

(81)
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In Eq. (81), a coe�cient f⌫ is defined by

f⌫ ⌘

⇣
n̂

2
� 1

⌘ ln ⌫

⌫ � 1
(1  ⌫ < 1; n̂ = 3). (82)

Hence, the use of the practical closure scheme given by Eq. (80) allows physical quantities

obtained from a solution of Eq. (49) to depend on a parameter ⌫.

The practical closure scheme given by Eq. (80) means that 1/rn̂/2 (n̂ = 3, 5, · · · ) is

approximately expressed as
8
>>>><

>>>>:

1

rn̂/2 ⇡ (��n̂/2+1) exp[n̂/2� 1] exp[�(n̂/2� 1)r/�]/r, (⌫ = 1, n̂ = 3, 5, · · · ),

1

rn̂/2 ⇡ (��n̂/2+1) exp[f⌫ ] exp[�f⌫r/�]/r, (1  ⌫ < 1, n̂ = 3, 5, · · · ),

1

rn̂/2 ⇡
�
�n̂/2+1

r
, (⌫ = 1, n̂ = 3, 5, · · · ),

(83)

where f⌫ is defined by Eq. (82). In the case of ⌫ = 1 and n̂ = 3, the approximation given

by Eq. (83) somewhat underestimates the long-ranged contribution of C+(r). In the case

of ⌫ = 1 and n̂ = 3, the approximation given by Eq. (83) somewhat overestimates the

long-ranged contribution of C
+(r). On applying the Yukawa potential to Eq. (79), the

contribution of the factor (e�r)3/2 to the decay of C+(r) can be much more dominant than

the contribution of the factor (1/r)3/2 as r increases. Considering this, the contribution

of the factor (1/r)3/2 can be approximated by the contribution of 1/r in Eq. (79). This

corresponds to the case of ⌫ = 1, which can become a reasonable approximation for a

large . For an extremely small , the decay of C+(r) cannot strongly depend on the factor

(e�r)3/2. Then, the decay of C+(r) deviates from the decay given for ⌫ = 1 by Eq. (80).

However, the decay of C+(r) is located between the decay given for ⌫ = 1 by Eq. (80) and

that given for ⌫ = 1 by Eq. (80).

If Eq. (49) can be exactly solved with the closure scheme given by Eq. (79), then it

is expected that the value of P(r) that is assessed from a solution obtained in a specific

condition can be found between two values. In this condition, one of the two values is

assessed from a solution of the integral equation system formed by Eqs. (49) and (80) when

specified by ⌫ = 1. Under the same condition, the other is assessed from the solution when

specified by ⌫ = 1. The expectation mentioned here is caused by the practical closure given

by Eq. (80). If the value of ⌫ satisfies 1 < ⌫ < 1, then the approximation given by Eq. (83)

can allow the value of P(r) estimated with the use of Eq. (80) to fall between the value of

P(r) given in the case of ⌫ = 1 and the di↵erent value of P(r) given in the case of ⌫ = 1.
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All physical quantities that are estimated from a solution P(r) obtained from Eqs. (49)

and (80) depend on the value of ⌫, as demonstrated by the phase diagrams given in Fig. 35.

Therefore, the coe�cients bC+(0) and bC+(2), which are defined by the integration being given

by Eq. (116), depend on the value of ⌫ when the practical closure given by Eq. (80) is used.

Indeed, the internal energy and the pressure that are estimated from the use of the solution

P obtained from Eqs. (49) and (80) depend on the value of ⌫.42

( c ) Determining reasonable value of f⌫

It is necessary to determine a reasonable value of f⌫ , which makes Eq. (80) become a

suitable approximation of Eq. (79). Equation (80) requires that ⇡(r) defined as

⇡(n̂/2; r) ⌘ 1/rn̂/2, (n̂ = 3, 5, · · · )

be approximated by ⇡a(n̂/2; r) defined as

⇡a(n̂/2; r, f⌫) ⌘ �
�n̂/2+1

e
f⌫ exp[�(f⌫/�)r]/r.

For arbitrary f⌫ that is not restricted by Eq. (82), the functions ⇡ and ⇡a satisfies at r = �

⇡(n̂/2; �) = ⇡a(n̂/2; �, f⌫).

Despite this, the decay of ⇡a(n̂/2; r, f⌫) toward zero is faster than that of ⇡(n̂/2; r) toward

zero for a large r. Then, a way to reasonably determine the value of f⌫ is necessary.

There is a particular value of f⌫ for which the integral of ⇡a(n̂/2; r, f⌫) for the interval

�  r < 1 is equated with the integral of ⇡(n̂/2; r) for the interval �  r < 1. At the

value of f⌫ , the following relation is satisfied:
Z 1

�

⇡(n̂/2; r)dr =

Z 1

�

⇡a(n̂/2; r, f⌫)dr. (84)

Equation (84) results in

(n̂/2� 1)�1 = �e
f⌫Ei(�f⌫), (n̂ = 3, 5, · · · ), (85)

where the exponential integral Ei(x) is defined as Ei(�x) ⌘ �
R1
x

e
�t
t
�1dt (x > 0). In Eq.

(85), Ei is estimated as

Ei(�f⌫) = ln f⌫ + � +
1X

m=1

(�1)m
(f⌫)m

mm!
.
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FIG. 1. Comparison between ⌧⇡a(n̂/2; r, f⌫) and ⌧⇡(n̂/2; r); (⌧ ⌘ �
n̂/2) for n̂ = 3. Dashed curve

corresponds to ⌧⇡a(n̂/2; r, f⌫). Thick curve corresponds to ⌧⇡(n̂/2; r).

In the above, � is Euler’s constant given as

� = lim
m!1

"
mX

k=1

� lnm

#
= 0.5772156649 · · · .

Equation (85) specified for n̂ = 3 is satisfied for f⌫ = 0.1018532115 · · · (corresponding to

⌫ = 13.93091523 · · · ).

In Fig. 1, a comparison between the decay of ⌧⇡(n̂/2; r) and the decay of ⌧⇡a(n̂/2; r, f⌫)

can be confirmed for f⌫ = f⌫n̂/2
specified by n̂ = 3. Then, ⌧ is defined as ⌧ ⌘ �

n̂/2, and f⌫n̂/2
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is given for n̂ = 3 as

f⌫3/2 = 0.1018532115. (86)

( d ) Solution of integral equation

The use of Baxter’s Q function43 has allowed several analytical calculations for the

Ornstein–Zernike equation.43,83 The use of Baxter’s Q function enables Eq. (49) also to

be solved analytically.27 Then, it is useful to consider the closure scheme given by Eq. (80).

The Fourier transform of the integral equation given by Eq. (49) is a useful and mathematical

treatment.

A Fourier transform of a correlation function symbolized by F (r) is expressed as eF (k).

Then, eF (k) is defined by
8
><

>:

eF (k) ⌘ limV!1 ⇢
R
V
F (r) exp[ik · r]dr, (r ⌘ |r|, k ⌘ |k|),

eF (0) = limV!1 ⇢
R
V
F (r)dr.

(87)

For use of the above notation, the Fourier transform allows Eq. (49) to be expressed as

h
1 + eP(k)

ih
1� eC+(k)

i
= 1. (88)

The use of Baxter’s Q function43 enables Eq. (88) to be divided into two equations as follows:

8
><

>:

1� eC+(k) = eQ+(k) eQ+(�k),
h
1 + eP(k)

i
eQ+(k) =

h
eQ+(�k)

i�1

,

(89)

where eQ+(k) corresponds to Baxter’s Q function,43 which is defined by

8
>>>><

>>>>:

eQ+(k) ⌘ 1� ⇢ bQ+(�ik)

bQ+(s) ⌘
R1
0

Q
+(t)e�stdt

R1
�1

h
eQ+(�k)

i�1

e
�ikrdk = 0.

(90)

For k = 0, Eq. (89) allows an important relation for estimation of percolation of physical

clusters to be obtained because of Eq. (90) as follows:

h
1� ⇢ bQ+(0)

i�2

= 1 + ⇢

Z

V

P(r)dr, (91)
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where

lim
k!0

eP(k) = ⇢

Z

V

P(r)dr. (92)

Thus, the substitution of Eq. (91) into Eq. (44) allows the mean physical cluster size to

be estimated as

S =
h
1� ⇢ bQ+(0)

i�2

. (93)

Then, the percolation threshold of physical clusters corresponds to the condition specified

by 1�⇢ bQ+(0) = 0. If Q+(r) is determined, then the percolation threshold is estimated from

relation 1� ⇢ bQ+(0) = 0.

Baxter’sQ function allows an equation concerning P(r) and the other equation concerning

C
+(r) to be separated from the integral equation formed by Eq. (49) as seen in Eq. (89).

Moreover, two equations are obtained from the substitution of Eq. (90) into Eq. (89). If the

integration of the product of each of the two equations and e
�ikr is performed with respect

to k in the range �1 < k < 1, then two inverse transforms are obtained from Eq. (89).43

One of the two inverse transforms expresses a formula concerning P(r), which satisfies Eq.

(49). The other expresses a formula concerning C
+(r), which satisfies Eq. (49). Thus, the

two formulae are given as follows:

2⇡rP(r) = �
d

dr
Q

+(r) + 2⇡⇢

Z 1

0

Q
+(t)(r � t)P(|r � t|)dt, (0 < r < 1), (94)

and

2⇡rC+(r) = �
d

dr
Q

+(r) + ⇢

Z 1

0

Q
+(t)

d

dr
Q

+(r + t)dt, (0 < r < 1). (95)

The use of these two equations allows Q(r) to be determined.

A relation P(r) = 0 given by Eq. (39) for r < � and the requirements of C+(r) given

by Eq. (80) require the function Q
+(r) in Eqs. (94) and (95) to be of limited forms. The

limited form should be given as

Q
+(r) = Q

+

0
(r) + D̆e

�z̆r
, (96)

where
8
><

>:

Q
+

0
(r) = (r � �)q́ + C̆(e�z̆r

� e
�z̆�) (r < �)

Q
+

0
(r) = 0 (�  r).

(97)
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In Eqs. (96) and (97), the unknown coe�cients C̆, D̆, and q́ can be determined via the use

of Eqs. (94) and (95). As a result, the function Q
+(r) is determined. Therefore, the pair

connectedness P(r) is determined via Eq. (94).

If limu(r)!1 P(r) = 0 owing to the hard-core potential contributing for r < � is considered

according to Eq. (39), then the substitution of Eq. (96) into Eq. (94) allows a relation for

r < � to be obtained as

�q́ + z̆C̆e
�z̆r + z̆D̆e

�z̆r
� 2⇡⇢D̆e

�z̆r

Z 1

0

P(t)e�z̆t
tdt = 0, (r < �). (98)

If the left-hand sides in Eq. (98) is compared with the right-hand sides, then the restrictions

for the coe�cients are yielded as follows:

q́ = 0, (99)

and

C̆ = �(1� bP(z̆))D̆, (100)

where

bP(z̆) ⌘ 2⇡
⇢

z̆

Z 1

0

P(t)e�z̆t
tdt = 2⇡

⇢

z̆

Z 1

�

P(t)e�z̆t
tdt. (101)

Under the condition that �  r is satisfied, the substitution of Eqs. (97) and (80) into Eq.

(95) allows the following relation to be obtained:

2⇡k̆d̆d̆ = z̆D̆ � z̆⇢D̆ bQ+(z̆), (102)

where

bQ+(s)⌘

Z 1

0

Q
+(t)e�stdt

= C̆e
�z̆�

⇣
e
z̆�

� e
�s�

s+ z̆
�

1� e
�s�

s

⌘
+ D̆

1

s+ z̆
. (103)

The expression given by Eq. (103) can be obtained by substituting Eq. (96) into the integral

for defining bQ+(s) in Eq. (90).

For r < �, Eqs. (96) and (97) allow Eq. (94) to be modified as

0 = z̆C̆e
�z̆r + z̆D̆e

�z̆r + 2⇡⇢

Z 1

r

Q
+(t)(r � t)P(|r � t|)dt. (104)
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Equation (104) is equivalent to Eq. (98) which has no singularity for 0 < r < 1; hence, Eq.

(104) is satisfied for 0 < r < 1. If each factor given by Eq. (104) is subtracted from each

factor given by Eq. (94), then a formula for �  r can be obtained as

2⇡rP(r) = �z̆C̆e
�z̆r + 2⇡⇢

Z
r

0

Q
+(t)(r � t)P(r � t)dt. (105)

A relation between bP(z̆) and bQ+(z̆) is estimated from the Laplace transformation corre-

sponding to performing the integration of the product of exp(�z̆r) and Eq. (105) with

respect to r within the range �  r < 1. This is given as

z̆

⇢

bP(z̆)[1� ⇢ bQ+(z̆)] = �
1

2
C̆e

�2z̆�
. (106)

A relation between bP(z̆) and D̆ is obtained if bQ+(z̆) obtained from the substitution of Eq.

(100) into Eq. (103) is substituted into Eq. (102). This is given as

D̆

�2
=

⇡z̆�

6�

1�
h
1� 24�

(z̆�)2
k̆d̆d̆

�

⇣
1� (1� e

�z̆�)2(1� bP(z̆))
⌘i1/2

1� (1� e�z̆�)2(1� bP(z̆))
, (107)

where � is the volume fraction defined as

� ⌘
⇡

6
⇢�

3
. (108)

Another relation between bP(z̆) and D̆ is obtained if Eq. (100) is substituted into the

formula obtained from the substitution of Eq. (103) into Eq. (106). This is given as

bP(z̆) =
3�

⇡z̆�

h
e
�z̆� + bP(z̆)(1� e

�z̆�)
i2 D̆
�2

. (109)

Using Eqs. (107) and (109), the unknown coe�cients D̆ and bP(z̆) can then be determined.

The coe�cients D̆ and bP(z̆) must depend on the value of ⌫ (1  ⌫ < 1) according to Eq.

(81).

( e ) Estimation of percolation threshold for single-component Yukawa fluid

The mean cluster size S given by Eq. (93) can be estimated via the use of bQ+(0). bQ+(0)

is determined from the use of Eqs. (100) and (103) as

z bQ+(0) = �e
�z̆�(ez̆� � 1� z̆�)(1� bP(z̆))D̆ + D̆. (110)

The substitution of Eq. (110) into Eq. (93) allows the mean cluster size S to be given as

S =
n
1�

6�

⇡z̆�

D̆

�2

h
(1 + z̆�)e�z̆� + [1� (1 + z̆�)e�z̆�] bP(z̆)

io�2

. (111)
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According to Eq. (111), the percolation threshold at which 1� ⇢ bQ+(0) = 0 should hold can

be estimated using the following equation:

h 6�

⇡z̆�

D̆

�2

i�1

� (1 + z̆�)e�z̆�
� [1� (1 + z̆�)e�z̆�] bP(z̆) = 0. (112)

The value of bP(z̆) at the percolation threshold is obtained by substituting Eq. (109) into

Eq. (112) as

bPP = e
�z̆�

n
z̆� + e

�z̆�
�

h
(z̆�)2 + 1

i1/2oh
e
�2z̆�

� 1 + 2z̆�e�z̆�

i�1

, (113)

where bPP is the value of bP(z̆) at the percolation threshold. If the value of k̆d̆d̆ at the

percolation threshold is expressed as (k̆d̆d̆)P, then the value of (k̆d̆d̆)P can be obtained by

modifying Eq. (107) as

(k̆d̆d̆)P

�
=

z̆�

2⇡
·
D̆

P

�2
�

3�

2⇡2

h
1� (1� e

�z̆�)2(1� bPP)
i⇣

D̆
P

�2

⌘2

, (114)

where D̆
P is the value of D̆ evaluated from Eq. (109) for bP(z̆) = bPP. The value of Kp

/�

being the value of K/� at the percolation threshold can be estimated through relation

(k̆d̆d̆)P/� = [4/(3
p
⇡)](�KP

/�)3/2 exp[f⌫ ] exp[(3/2)�] obtained from Eqs. (78) and (81).

The substitution of Eq. (109) into Eq. (114) results in a relation expressed as 1/KP
/ �

↵

with ↵ = 2/3. Relation 1/KP
/ �

↵ with ↵ = 1 corresponds to that given by Xu and Stell.27

( f ) Solution for Ornstein–Zernike equation for single-component Yukawa fluid

To analyze the behavior of a single-component fluid, coe�cients bC+(0), bC+(2), bC⇤(0), bC⇤(2),

bc(0), and bc(2) must be derived from correlation functions bC+(r), bC⇤(r), and bc(r). Then, a

way to di↵erentiate a Fourier transform eF (k) of a correlation function F (r) is useful for

estimating coe�cients bC+(2), bC⇤(2), and bc(2). If a di↵erential operator with respect to k is

defined as rk ⌘ (@/@kx, @/@ky, @/@kz) owing to the use of the three-dimensional elements

of k denoted by (kx, ky, kz), then the use of this operator allows derivatives of eF (k) to satisfy

lim
k!0

lim
V!1

⇢(d2
/dk2)

Z

V

F (r) exp[ik · r]dr = (11/6) lim
k!0

rk ·rk
eF (k),

where rk ·rk
eF (k) = � limV!1 ⇢

R
V
F (r)r2 exp[ik · r]dr. Therefore, the following relation

is found for macroscopic V :

⇢

Z

V

F (r)r2dr = �(6/11) lim
k!0

(d2
/dk2) eF (k). (115)
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If bF (↵) is defined as

bF (↵)
⌘

✓
1

6

◆↵/2 Z

V

F (r)r↵dr (↵ = 0, 2, 4), (116)

then, bF (0) satisfies the following relation:

⇢ bF (0) = lim
k!0

eF (k). (117)

Moreover, Eq. (115) is expressed as

⇢ bF (2) = �(1/11) lim
k!0

(d2
/dk2) eF (k). (118)

i ) Estimate of coe�cients bC+(0) and bC+(2)

Based on Eq. (117), a coe�cient bC+(0) is given by the following relation:

⇢ bC+(0) = lim
k!0

eC+(k). (119)

Eqs. (89) and (90) require bC+(0) to satisfy

⇢ bC+(0) = 1� lim
k!0

h
1� ⇢ bQ+(�ik)

ih
1� ⇢ bQ+(ik)

i
. (120)

Moreover, if Eqs. (115) is used with Eqs. (89) and (90), bC+(2) can be estimated as

⇢ bC+(2) = �
2

11
lim
s!0

⇣
�1 + ⇢ eQ+(s)

⌘
⇢
d2

ds2
bQ+(s)�

✓
⇢
d

ds
eQ+(s)

◆2�
. (121)

Therefore, Eqs. (120) and (121) allow bC+(0) and bC+(2) to be assessed with the use of Eqs.

(90) and (103). Then, the use of Eq. (80) makes the value of bC+(0) for f⌫ = 0 (⌫ = 1) di↵er

from that for f⌫ = 1/2 (⌫ = 1) and makes the value of bC+(2) for f1 = 0 di↵er from that

for f1 = 1/2. This is exemplified by Figs. 2 and 3. In these figures, ⇢C † 0 and ⇢C † 2/��

correspond to ⇢ bC+(0) and ⇢ bC+(2), respectively.

ii ) Estimate of bC⇤(0) and bC⇤(2) based on solution of Ornstein–Zernike equation

Coe�cients bC⇤(0) and bC⇤(2) can be estimated as bC⇤(0) = bc(0) � bC+(0), and bC⇤(2) = bc(2) �
bC+(2) based on Eq. (51). Coe�cients bC+(0) and bC+(2) are estimated by Eqs. (120) and (121).

If the pair potential u(r) contributing to the mutually attractive force between pair particles

is independent of the momenta of the particles, then the pair potential used when solving the
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FIG. 2. Dependence of ⇢ bC+(0) on � and dependence of ⇢ bC+(2)
/�

2 on � at � = 1.8 and �/�K =

1.0315 (corresponding to temperature near the critical point). ⌫s is given as ⌫s = 13.9309, and

⌫ = ⌫s is a relation for which Eq. (85) obtained from Eq.(84) is approximately satisfied. ⇢C † 0

and ⇢C † 2/�� correspond to ⇢ bC+(0) and ⇢ bC+(2)
/�

2, respectively.

integral equation given by Eq. (49) is not distinguished from that being used when solving

the integral equation given by Eq. (52). Then, the pair potential used to solve the integral

equation given by Eq. (49) can be used for solving the Ornstein–Zernike equation. From a

solution of the Ornstein–Zernike equation, coe�cients bc(0) and bc(2) can be estimated. Thus,

coe�cients bC⇤(0) and bC⇤(2) can be estimated without solving the integral equation given by
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FIG. 3. Dependence of ⇢ bC+(0) on �/�K (corresponding to reduced temperature) and dependence

of ⇢ bC+(2)
/�

2 on �/�K at � = 1.8 and � = 0.172 (corresponding to density near the critical

point). ⌫s is given as ⌫s = 13.9309, and ⌫ = ⌫s is a relation for which Eq. (85) obtained from

Eq.(84) is approximately satisfied. ⇢C † 0 and ⇢C † 2/�� correspond to ⇢ bC+(0) and ⇢ bC+(2)
/�

2,

respectively.

Eq. (52).

Eq. (15) with Eqs. (16) and (17) yields the Ornstein–Zernike equation. The use of Baxter’s

Q function43 allows the Fourier transform of the Ornstein–Zernike equation to be expressed
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as
8
><

>:

[1 + eh(k)] eQ(k) = eQ�1(�k)

1� ec(k) = eQ(k) eQ(�k),
(122)

where
8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

eh(k) ⌘ limV!1 ⇢
R
V
(g(r)� 1) exp[ik · r]dr

eQ(k) ⌘ 1� ⇢ bQ(�ik)

bQ(s) ⌘
R1
0

Q(t)e�stdt

Q(t) = Q
0(t) + dAe

�t

Q
0(t) = 1

2
q
(2)(t� �)2 + q

(1)(t� �) + B(e�t
� e

��) (0 < t < �)

Q
0(t) = 0 (�  t)

B ⌘ �dA

h
1� 12�

�

1

�2

R1
0

⌧g(⌧)e�⌧d⌧
i

R1
�1

h
eQ(�k)

i�1

e
�ikrdk = 0.

(123)

In Eq. (123), A, q(1), and q
(2) are unknown coe�cients.

To solve the Ornstein–Zernike equation analytically, the closure scheme based on the

MSA is given as
8
>>>><

>>>>:

c(r) = c
0(r)� �u(r)

c
0(r) = 0 (r/� > 1)

�u(r) = �k0dde
�r

/r.

(124)

Then, a solution for the Ornstein–Zernike equation is given according to a known

procedure46, and as a result, a coe�cient bQ(s) can be given as

bQ(s) =
1

2
q
(2)


�
2e�s�

s3
+

1

s

✓
�
2
�

2�

s
+

2

s2

◆�
+ q

(1)


�
e
�s�

s2
+

1

s

✓
�� +

1

s

◆�

�dA[1� g
()]e�


�e

�s� + e
�

+ s
+

e
�s�

� 1

s

�
+

dA

+ s
(125)

where q
(1) and q

(2) are given as

q
(1)

�
=2⇡

1 + �/2

(1� �)2
+

12�

(�)2
1

(1� �)2

⇢
(1� g

())e��


(1 + 2�)'2(�)

�

✓
1 +

�

2

◆
�'1(�)

�
+ 1 + 2��

✓
1 +

�

2

◆
�

�
dA

�2
(126)
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and

q
(2) =2⇡

1 + 2�

(1� �)2
�

12�

(�)2
1

(1� �)2

⇢
(1� g

())e��


(1 + 2�)�'1(�)

�6�'2(�)

�
+ (1 + 2�)� � 6�

�
dA

�2
(127)

with 8
><

>:

'1() ⌘ 1� � � e
��

'2() ⌘ 1� + (�)2/2� e
��

.

(128)

In Eq. (125), a coe�cient g() is defined as

g
()

⌘ 12
�

�

1

�2

Z 1

0

tg(t)e�tdt. (129)

Two unknown coe�cients A and g
() found in Eqs. (125), (126), and (127) must be

estimated from an equation system given as

g
()[1� ⇢ bQ()] =

6

⇡

�

(�)3
e
��

✓
q
(2)+�

q
(1)

�

◆
+

3

⇡

�

�
e
�2�

dA

�2
(1� g

()) (130)

2⇡
k0dd

�
=

dA

�2
�

⇢
1�

6�

⇡


'2()

(�)3
q
(2)+

'1()

(�)2
q
(1)

�

�'3()
dA

�2
(1� g

()) +
1

2

1

�

dA

�2

��
, (131)

where

'3() ⌘ e
��

✓
e
�

� e
��

2�
�

1� e
��

�

◆
. (132)

A factor ⇢ bQ() in Eq. (130) can be given, according to Eq. (125), as follows:

⇢ bQ() =
6�

⇡

'2()

(�)3
q
(2) +

6�

⇡

'1()

(�)2
q
(1)

�
�

6�

⇡
'3()

dA

2

�
1� g

()
�
+

3�

⇡

1

�

dA

2
. (133)

After the substitution of Eq. (133) into Eq. (130), if coe�cients q(1) and q
(2) in the obtained

equation are substituted with q
(1) given by Eq. (126) and q

(2) given by Eq. (127), respectively,

then the following equation is obtained:

⇡(�)5

72

(1� �)2

�2
g
() =

⇡(�)2

6

1 + 2�

�

�
'2()g

() + e
��

�
+

⇡(�)3

6

1 + �/2

�

�
'1()g

() + e
��

�

�

⇢�
'2()g

() + e
��

� 
(1� g

())e��

⇣
(1 + 2�)�'1(�)� 6�'2(�)

⌘
+ (1 + 2�)� � 6�

�

+�
�
'1()g

() + e
��

� 
(1� g

())e��

✓⇣
1 +

�

2

⌘
�'1(�)� (1 + 2�)'2(�)

◆
� 1� 2�

+
⇣
1 +

�

2

⌘
�

�
+ (�)4

(1� �)2

12�

⇣
�'3()g

()
�

e
�2�

2

⌘
(1� g

())�
1

2
g
()

��
dA

�2
. (134)
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The coe�cients g() and dA/�
2 are evaluated from Eqs. (134) and (131).

Obtained values of A and g
() allow bQ(s) to be determined with q

(1)
/� and q

(2). Therefore,

lims!0
bQ(s) can be estimated from the definition of bQ(s) given by Eq. (123) as follows:

lim
s!0

bQ(s) =

Z 1

0

Q(t)dt

=�
3

⇢
1

6
q
(2)

�
1

2

q
(1)

�
�

dA

�2

�
1� g

()
� e��

�
(�1� � + e

��) +
dA

�2

1

�

�
. (135)

Similarly, the derivatives lims!0 d bQ(s)/ds and lims!0 d2 bQ(s)/ds2 can be estimated from the

definition of bQ(s) given by Eq. (123) as follows:

� lim
s!0

d bQ(s)

ds
=

Z 1

0

Q(t)tdt

=�
4

⇢
1

24
q
(2)

�
1

6

q
(1)

�
�

dA

�2

�
1� g

()
� e

��

(�)2


�1� � �

1

2
(�)2 + e

��

�

+
dA

�2

1

(�)2

�
(136)

and

lim
s!0

d2 bQ(s)

ds2
=

Z 1

0

Q(t)t2dt

=�
5

⇢
1

60
q
(2)

�
1

12

q
(1)

�
+

dA

�2

�
1� g

()
� e

��

(�)3


2 + 2� + (�)2 +

1

3
(�)3 � 2e��

�

+2
dA

�2

1

(�)3

�
. (137)

iii ) Coe�cients bc(0) and bc(2)

Based on Eq. (117), a coe�cient bc(0) is given by the following relation:

⇢bc(0) = lim
k!0

ec(k). (138)

Hence, the Fourier transform of the Ornstein–Zernike equation given by Eq. (122) allows a

coe�cient bc(0) to be given because of Eq. (123) as follows:

⇢bc(0) = 1� lim
k!0

h
1� ⇢ bQ(�ik)

ih
1� ⇢ bQ(ik)

i
. (139)

Moreover, if Eq. (115) is used with Eqs. (123) and (122), then bc(2) can be estimated as

⇢bc(2) = �
2

11
lim
s!0

⇣
�1 + ⇢ eQ(s)

⌘
⇢
d2

ds2
bQ(s)�

✓
⇢
d

ds
eQ(s)

◆2�
. (140)
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Therefore, Eqs. (139) and (140) allow bc(0) and bc(2) to be assessed with the use of Eqs. (123)

and (125).

( g ) Evaluation of percolation thresholds for Yukawa fluids

In a fluid system, physical cluster formation and physical cluster growth a↵ect the distri-

bution pattern of particles and can a↵ect phase behavior. If the e↵ects of the physical cluster

formation on properties of the fluid system cannot be ignored, they should be maximized

at the percolation threshold related to the physical clusters. Thermodynamic properties of

the fluid system can have characteristic dependences on temperature T at least around the

value that T has at the critical point or another point on the spinodal line. In the phase

diagram of the fluid system, the curved line on which 1� ⇢bc(0) = 0 is satisfied corresponds

to the spinodal line. Thus, it is important to know the relation between the locus of the

percolation threshold and the locus of the spinodal line in the phase diagram. Knowing the

relation corresponds to the understanding of the links between the distribution pattern of

particles and the features of the fluid system.

i ) Percolation thresholds for Yukawa fluids

Evaluations of the percolation thresholds are achieved by the use of Eq. (114) while

considering Eqs. (78), (81), and (82). The evaluations for each Yukawa fluid exempli-

fied by � = 0.1, 0.5, 1.8, 3.6, 7.5 allow the loci of the percolation thresholds to depend

on f⌫ as found in Figs. 4, 6, and 7. An overestimate for the long-ranged contribution

of C+(r) is characterized by 1/r3/2 ⇡ 1/(�1/2
r) for f⌫ = 0 (⌫ = 1), and this leads to

an overestimate of [�KP
/�]�1. An overestimate of the decay of C

+(r) is characterized

by 1/r3/2 ⇡ e
1/2

e
�r/2�

/(�1/2
r) for f⌫ = 1/2 (⌫ = 1). This leads to an underestimate of

[�KP
/�]�1.

For a large �, exemplified by � = 7.5 and � = 3.6, the di↵erence between the locus of

the percolation threshold for f1 and that for f1 is small. However, the di↵erence between

the locus of the percolation threshold for f1 and that for f1 becomes large for a small �

exemplified by � = 0.1. When � is small, a way to determine a reasonable f⌫3/2 via Eq.(84)

should become useful. In Fig. 4, 6, and 7, the value of f⌫ for ⌫ = ⌫s being ⌫s = 13.9309 is

given as f⌫3/2 = 0.101853. For the f⌫ assessed from ⌫ = ⌫s, Eq. (85) obtained from Eq.(84)
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FIG. 4. Relation between percolation thresholds and curved line satisfying ec(0) = 1 for each

Yukawa fluid. Curved line satisfying ec(0) = 1 corresponds to the spinodal line. Each straight line

corresponds to percolation threshold. f4 and f⌫3/2 are given as f4 = (1/6) ln 4 and f⌫3/2 = 0.101853.

Upper straight line, broken line, dotted line, and lower straight line correspond to percolation

threshold given for f1, that for f⌫3/2 , that for f4, and that for f1. ec(0) (= ⇢bc(0)) is expressed as

”wave c(0)”. (Continued in Figs. 6 and 7.)

is approximately satisfied.

At the temperature of a fluid that is su�ciently low in comparison with the strength

of each mutually attractive force between particles, the formation of physical clusters is
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FIG. 5. Dependence of �c and (�/�K)c on � for f⌫ = f⌫3/2 = 0.101853. �c corresponds to value

of � at critical point of Yukawa fluid characterized by �. (�/�K)c corresponds to value of �/�K

at critical point. In (b), (�/�K)p corresponds to value of �/�K at percolation threshold specified

by magnitude of �c and magnitude of �. Circles in (a) and (b) both correspond to specific

point satisfying relation (�/�K)p = (�/�K)c (⇡ 0.94379), which is evaluated for � = (�)s

((�)s ⌘ 1.924601) and �c = 0.164275. For � > (�)s, relation (�/�K)p < (�/�K)c is always

satisfied.
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FIG. 6. Relation between percolation thresholds and curved line satisfying ec(0) = 1 for each

Yukawa fluid. Details are same as those in Fig. 4. When percolation threshold that is evaluated

for f⌫3/2 = 0.101853 agrees with the critical point, � ⇡ 1.924601 must be satisfied. When

relation � < 1.924601 is satisfied, critical point specified at � = �c is located in upper position of

percolation threshold specified at � = �c.

possible, even in the low-density side. This should contribute even to the distribution of

astronomical matters. The evaluations for each Yukawa fluid denote that the percolation

threshold for a su�ciently small � can be located on the low-density side as that located

above the curved line obtained from relation �(@P/@⇢) = 0, which corresponds to ⇢bc(0) = 1.
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FIG. 7. Relation between percolation thresholds and curved line satisfying ec(0) = 1 for each

Yukawa fluid. Details are same as those in Fig. 4. For � = 7.5, percolation threshold estimated

for f1 somewhat completely overlaps that estimated for f1. When percolation threshold that is

evaluated for f⌫3/2 = 0.101853 agrees with critical point, � ⇡ 1.924601 must be satisfied. When

relation � > 1.924601 is satisfied, percolation threshold specified at � = �c is located in upper

position of critical point specified at � = �c.

In the area located under the curved line consisting of the points at which ⇢bc(0) = 1

is satisfied, the gas state of each fluid allows the phase stability to disappear. Then, the

aggregation of particles allows the phase transition to occur while accompanying the phase

69



separation. If the phase transition occurs in the specific area that is located under the

curved line and above the percolation threshold, then the liquid phase induced by the phase

transition can maintain a state of no percolation of physical clusters. This phenomenon is

exemplified by the phase diagrams for � = 1.8, � = 1, � = 0.5, and � = 0.1, and is

similar to that found in the phase diagram in Reference.3 This phenomenon suggests that

a fluid in the liquid phase can change from a state of low viscosity to another state of high

viscosity as � increases. Even if the fluid maintains a state of low viscosity owing to the

lack of percolation, the percolation that occurs as � increases can allow the state to change

to another state of high viscosity.

The percolation of physical clusters is induced even in a fluid characterized by the mu-

tually attractive force between particles of which the e↵ective range 
�1 is narrow. Then,

the mean interparticle distance must be short. If the contribution of the mutually attractive

force generates the liquid phase for a small �1, then particles in the liquid phase should be

located near each other. The generation of the liquid phase should require dense parts to

be formed in the fluid. These dense parts should include extremely large physical clusters

in the percolation state. If the liquid phase is generated even at a small �1, then the fluid

in the liquid phase should always maintain the percolation state. This is demonstrated by

the diagrams given for � = 3.6 and 7.5 in Fig. 7. Under the condition that extremely large

physical clusters are included, the liquid phase should maintain a high viscosity. In addition,

if the linear scale is applied, then the diagrams in Fig. 7 are represented by Fig. 8.

If the liquid phase is generated in a fluid consisting of particles interacting with a short-

ranged attractive force, then the liquid phase contains extremely large physical clusters. If


�1 is not small, then the mutually attractive force between particles constituting a fluid

contributes over a long range. The liquid phase that is generated in the fluid cannot include

physical clusters that have extremely large sizes. Without the formation of physical clusters

of extremely large size, the long-ranged attractive force can allow particles to be retained in

the liquid phase.

The volume fraction � at the percolation threshold specified for a particular value of K

decreases as the e↵ective range �1 is extended. This behavior is readily confirmed by Fig. 8.

Similar behavior has been found in a percolating system composed of core-soft-shell spheres

with an attractive square-well potential.39

If the e↵ective range 
�1 is extended, then overlaps of the e↵ective range depending on
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FIG. 8. Phase diagrams represented by use of linear scale for � = 3.6 and � = 7.5.

the distribution of particles increase. Indeed, the number of particles with which a particle

interacts increases as the overlaps of the e↵ective range increase. Thus, an increase in 
�1

can enhance a cooperative e↵ect that contributes to the formation of a nonuniform particle

distribution. The threshold of the phase separation is expressed by �(@P/@⇢) = 0, and

the curved line on which �(@P/@⇢) = 0 is satisfied has the maximum point. The maximum

point shifts to an upper position as (�)�1 increases. This can be confirmed by a comparison

between phase diagrams.

When a decrease in the temperature of a fluid or an increase in the density of particles

occurs, either the aggregation of particles resulting in the phase separation can be dominated
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or the generation of the percolation can be dominated, depending on the distance at which

the attractive forces between the particles remain e↵ective. Either the generation of the

percolation or the aggregation of particles resulting in the phase separation is enhanced

as 
�1 increases. Nevertheless, an increase in the value of �1 cannot allow the particles

that satisfy the criterion E(p) + �u(r)  0 with contribution E(p) of the relative kinetic

energy to considerably increase in the distribution of particles surrounding each particle. At

a large �, which allows large numbers of particles to be included in their distribution, the

tendency toward the aggregation that results in phase separation is more dominant than

that toward the generation of the percolation. At a small �, which does not allow large

numbers of particles to be included in the distribution, the tendency toward the generation

of the percolation can be more dominant than that toward the aggregation that results in

phase separation. According to the tendency found in Fig. 4, the generation of percolation

without phase separation is possible, even for an extremely large 
�1, if � is su�ciently

small.

ii ) Two possible values of g(k) in each condition

Making the assumption that the pair potential contributing to the mutually attractive

force between pair particles corresponds to the Yukawa potential allows for an analytical

solution formed as an algebraic equation system composed of Eqs. (131) and (130). This

algebraic equation system allows at least two values to be given for g
(k) in a condition

related to the parameters: �, �, and �/�K. If two values for g(k) are expressed as g(k)
S

and

g
(k)

L
, relation g

(k)

S
< g

(k)

L
is always satisfied. For a small �, the di↵erence (g(k)

L
� g

(k)

S
)/g(k)

L

becomes small. For a smaller �, the di↵erence can more approach a situation satisfying

0 < (g(k)
L

� g
(k)

S
)/g(k)

L
⌧ 1 in each condition.

Under the condition satisfying 1 � ⇢bc(0) = 0, even g
(k)

S
⇡ g

(k)

L
is satisfied. Then, it

is possible to find the value of g
(k)

S
that satisfies 1 � ⇢bc(0) = 0. Although the value of

g
(k)

L
satisfying 1 � ⇢bc(0) ⇡ 0 can be found, finding the value of g(k)

L
that exactly satisfies

1 � ⇢bc(0) = 0 is di�cult. Moreover, quantities evaluated from the use of g(k) = g
(k)

L
can

deviate from those obtained from the use of g(k) = g
(k)

S
. Curved patterns expressed by small

circles in Fig. 10 correspond to P(�)/g(�) evaluated from the use of g(k) = g
(k)

L
. Curved

dotted lines expressed in Fig. 11 correspond to D(�) evaluated from the use of g(k) = g
(k)

L
.

Thus, g(k) = g
(k)

S
is applied for estimating all quantities.
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FIG. 9. Dependence of P(�)/g(�) on �/�K. Both � and � are constant. Then, P(�)/g(�) behaves

as P(�)/g(�) ⇠ (�/�K)↵, (↵ = �1.4997 · · · ). At maximum point of each line, 1 � ⇢bc(0) = 0 is

satisfied. P(�) corresponds to P(�+) estimated from Eq. (142), and g(�) corresponds to g(�+)

estimated from Eq. (143).

Nevertheless, a physical meaning carried by g
(k) = g

(k)

L
cannot be simply ignored. The

existence of g(k)
S

and g
(k)

L
suggests that a structure of a fluid satisfying 1 � ⇢bc(0) = 0 and

another structure of the fluid satisfying 1 � ⇢bc(0) ⇡ 0 are possible. The relation g
(k)

S
6= g

(k)

L

may allow phase separation to occur under the condition specified by 1 � ⇢bc(0) = 0. Eqs.

(131) and (130) are satisfied for both g
(k) = g

(k)

S
and g

(k) = g
(k)

L
. There can exist phenomena
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FIG. 10. Dependence of P(�)/g(�) on �. Both � and �/�K are constant. Then, behavior of

P(�)/g(�) remains nearly constant. Small circles, which deviate from straight lines, denote value

of P(�+)/g(�+) evaluated for g(k) = g
(k)

L
. At the endpoint of each curved line on the small side of

�, 1 � ⇢bc(0) ⇡ 0 is satisfied. P(�) corresponds to P(�+), and g(�) corresponds to g(�+). gL(k)

corresponds to g
(k)

L
. Lines (1), (2), . . . , and (15) correspond to top, second, . . . , and bottom.

exemplified by liquid-liquid transitions.44 According to physical intuition, g(k)
L

should not be

simply ignored.

iii ) Three parameters a↵ecting correlation functions
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The number npair of particle pairs constituted by each pair satisfying the bound condition

E(p)  ��uY(r) increases as K increases. Moreover, npair can increase both as �1 increases

and as � increases. The variations in K, �1, and � can result in variations in P(r) and g(r)

owing to the change in npair. Then, the behavior of P(r) and g(r) owing to the variation

in K can di↵er from that owing to the variation in 
�1. The increase in K enhances the

magnitude of �uY(r) in the range 0 < (r � �)/� ⌧ 1, while the variation in 
�1 cannot

change it in this range. The behavior of P(r) and g(r) owing to the variation in K can also

di↵er from that owing to the variation in �. Without changes in the magnitude of �uY(�),

increases in 
�1 as well as in � lead to an increase in the number of particles with which a

particle interacts. Thus, the behavior of P(r) and g(r) owing to the increases in either �1

or � may di↵er from that owing to the increase in K.

Figure 9 shows the behavior of the ratio P(r)/g(r) in the range 0 < (r � �)/� ⌧ 1.

The ratio lim�!0 P(� + �)/g(� + �), which is described as P(�+)/g(�+), is sensitive to the

variations in the value of �/�K, and the ratio increases as K increases. In Fig. 9, P(�)

corresponds to P(�+) estimated from Eq. (142), and g(�) corresponds to g(�+) estimated

from Eq. (143).

The ratio P(�+)/g(�+) is weakly increased with an increase in the e↵ective range 
�1,

although the ratio remains nearly constant for a large �/�K. This behavior is confirmed

by Fig. 10. Basically, the behavior of P(�+) and the behavior of D(�+) are both insensitive

to variations of � when �/�K is large. These behaviors are seen in Fig. 11 as well as in

Fig. 12. For a small �/�K, P(�+) is, however, increased weakly with an increase in the

value of �1, as found in Fig. 12. According to Fig. 12, D(�+) is then decreased with an

increase in the value of �1.

According to Fig. 13, the behavior of P(�)/g(�) remains nearly constant for variations

in the value of �. Then, both � and �/�K are constant. The ratio P(�+)/g(�+) can be

considerably insensitive to the variations in �. The value of P(�+)/g(�+) resists a decrease

in �. The behavior of P(�)/g(�) found in Fig. 13 does not mean that P(�) and D(�) are

both insensitive to variations in the value of �. In fact, an increase in P(�) for an increase

in � is confirmed from Fig. 14, and an increase in D(�) for an increase in � is confirmed

from Fig. 15. These features of P(�) and D(�) denote that P(�+) and g(�+) can behave as

P(�+) ⇠ �
↵̂ and g(�+) ⇠ �

↵̂, respectively.

The ratio P(�+)/g(�+) is given as P(�+)/g(�+) = [1 + D(�+)/P(�+)]�1 because of
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FIG. 11. Dependences of P(�) and D(�) on � for a large �/�K . Both � and �/�K are constant.

Then, behaviors of P(�) and D(�) remain nearly constant. Curved dotted lines, which deviate

from straight lines, denotes value of D(�+) evaluated for g(k) = g
(k)

L
. P(�) corresponds to P(�+),

and D(�) corresponds to D(�+). gL(k) corresponds to g
(k)

L
. Top three lines, i.e., top, second, and

bottom correspond to D(�), � = 0.1, � = 0.04, and � = 0.01, respectively. Bottom three lines,

i.e., top, second, and bottom correspond to P(�), � = 0.1, � = 0.04, and � = 0.01, respectively.

Eq. (38). The probability that two particles are accidentally located in the range 0 <

(r � �)/� ⌧ 1 is equal to the sum of the probability that a bound state is formed between

the particles located in the range 0 < (r � �)/� ⌧ 1 and the probability that the particles
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FIG. 12. Dependences of P(�) and D(�) on � for a small �/�K. Both � and �/�K are constant.

Then, P(�) is increased weakly, and D(�) is decreased weakly. P(�) corresponds to P(�+), and

D(�) corresponds toD(�+). At the endpoint of each curved line on the small side of �, 1�⇢bc(0) ⇡ 0

is satisfied. Thin lines from the top to bottom correspond to lines from (1) D(�) to (5) D(�). Thick

lines from top to bottom correspond to lines from (1) P(�) to (12) P(�).

are located in the range 0 < (r� �)/� ⌧ 1 without forming the bound state. Then, P(�+)

is proportional to the probability that they form the bound state, and D(�+) is proportional

to the probability that they are located in the range 0 < (r � �)/� ⌧ 1 without forming

the bound state. Figures 14 and 15 denote that P(�+) and D(�+) behave as P(�+) ⇠ �
↵̂
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FIG. 13. Dependence of P(�)/g(�) on �. The endpoint of each curved line on the side of a large

� corresponds to the point at which 1 � ⇢bc(0) ⇡ 0 is satisfied, except the uppermost dotted line

on which endpoint is percolation threshold. P(�) corresponds to P(�+) estimated from Eq. (142),

and g(�) corresponds to g(�+) estimated from Eq. (143). S is the mean size of physical clusters.

[�/�K]c denotes the value of �/�K at the critical point.

and D(�+) ⇠ �
↵̂. This demonstrates that g(�+) behaves as g(�+) ⇠ �

↵̂.

As the density of particles approaches zero, the probability characterized by P(�+) ap-

proaches zero more rapidly than the probability characterized by D(�+). If this is correct,

then the procedure for making the density approach zero should allow the distribution of
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FIG. 14. Dependence of P(�) on �. Both �/�K and � are constant. Then, P(�) can behave as

P(�) ⇠ �
↵̂ (↵̂ = 1.0010 · · · ). Endpoint of each curve on side of large � corresponds to the point

at which 1 � ⇢ bC+(0) ⇡ 0 is satisfied. P(�) corresponds to P(�+). [�/�K]c denotes the value of

�/�K at the critical point.

particles to become homogeneous, independently of attractive interactions between particles.

However, this is not correct. The probability characterized by P(�+) becomes proportional

to the probability characterized by P(�+)+D(�+) when the density is su�ciently low. The

behavior of P(�+)/g(�+) revealed in Fig. 13 requires that the following relation is satisfied:

lim
�!0

P(�+)/g(�+) 6= 0. (141)
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FIG. 15. Dependence of D(�) on �. Both �/�K and � are constant. Then, D(�) both can

behave as D(�) ⇠ �
↵̂, (↵̂ = 1.0010 · · · ). Endpoint of each curve on the side of large � corresponds

to the point at which 1 � ⇢ bC+(0) ⇡ 0 is satisfied. D(�) corresponds to D(�+) estimated from

D(�+) = g(�+)� P(�+). [�/�K]c denotes value of �/�K at the critical point.

The feature of P(�+)/g(�+) resisting a decrease in � demonstrates that attractive forces

between particles allow the particle distribution to remain inhomogeneous no matter how

low the particle density is. A typical example of this can be found as the distribution of

astronomical matter.
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iv ) Estimations of P(�+) and D(�+)

In the range 0 < (r � �)/� ⌧ 1, P(r) can be estimated readily. If Eqs. (100) and (105)

are used with limu(r)!1 P(r) = 0 owing to a relation given by Eq. (39), then it is given as

2⇡�P(�+) = ze
�z�(1� bP(z))D̆. (142)

In the range 0 < (r � �)/� ⌧ 1, the pair correlation function g(r) can be given on the

basis of references83 as

g(�+) = g
HS +

�K

�
[F0(�,�) + �XF1(�,�)]

�2
, (143)

where

g
HS

⌘
1

1� �

⇣
1 +

2

3
·

3�

1� �

⌘
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F0(�,�) ⌘ 1 +
1
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(1� e
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�

2

⌘
e
��
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⇥
3�

1� �

⇣
1 +

�

2
+

3�

1� �

⌘
,

and

F1(�,�) ⌘
1

�
(1� e

��)�
4

(�)3

h
1�

�

2
�

⇣
1 +

�

2

⌘
e
��

i 3�

1� �
.

An unknown coe�cient X in the above equation is determined from the following equation:

X(X + 1)
h
X +

F0(�,�)

�F1(�,�)

i2
= �

�K

�

6�

[(�)2F1(�,�)]2
.

The behavior of P(�+) can represent features accompanied by the probability that a

particle located at r = 0 and another particle located in the range 0 < (r��)/� ⌧ 1 form a

bound state. The behavior of D(�+) can represent features accompanied by the probability

that the two particles are located at the same positions without forming the bound state.

Although P(�+) depends sensitively on �/�K, for constant � and constant �, D(�+) can

remain constant with resisting variations in �/�K. This is confirmed by Fig. 16.

If � and �/�K are constant, then the value of P(�+) can remain nearly constant with

resisting variations in � as confirmed from Fig. 11 and 12. In addition, the value of D(�+)

can remain nearly constant. For a small �/�K, the value of D(�+) is weakly increased

with an increase in the value of �, although P(�+) is weakly decreased. As the e↵ective

range �1 is shortened, the probability that a particle located at r = 0 and another particle
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constant. At left endpoint of each line, 1�⇢bc(0) = 0 is satisfied. P(�) corresponds to P(�+). D(�)

corresponds to D(�+) estimated from D(�+) = g(�+)� P(�+).

located in the range 0 < (r��)/� ⌧ 1 do not form a bound state are increased. An increase

in the probability corresponds to an increase in the number of particles that do not form

bound states. When the e↵ective range 
�1 is further shortened, unless the value of �/�K

is further decreased, a Yukawa fluid specified by 
�1 cannot undergo phase separation as

known from a comparison between Figs. 7 and 6.
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If �1 is su�ciently large, then sizes of the physical clusters in the fluid remain small

while the fluid falls into a state where it can undergo phase separation. Thus, an increase in


�1 allows the tendency toward the generation of percolation to be less dominant than that

toward aggregation, resulting in only phase separation. If the e↵ective range �1 is narrow,

then the number of particles should be large near each particle to induce the percolation.

Thus, the dependence of P(�+)/g(�+) on �/�K is strong, although its dependences on �

and � are not strong.
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6. Di↵erential equations for correlation functions

( a ) Maclaurin series expansions

The magnitude of the direct correlation function c(r) tends to decay to zero within a

microscopic range, and both C
+(r) and C

⇤(r) also have a tendency to decay to zero within

microscopic ranges according to c(r) = C
+(r)+C

⇤(r). By contrast, the correlation function

g(r)� 1 can decay to zero much more slowly out of the ranges where c(r) 6= 0.13,18 Further,

P(r) and H(r) can decay to zero much more slowly out of the ranges where C
+(r) 6= 0 and

C
⇤(r) 6= 0 according to g(r)� 1 = P(r) +H(r). Thus, the particular ranges for which c(r),

C
+(r), and C

⇤(r) decay to zero remain much smaller than those for which P(r) and H(r)

decay to zero. This allows P(r) and H(r) in the convolution integrals of Eqs. (49) and (52)

to be expressed as Maclaurin series expansions.

If a polar coordinate system with a point r1 located at the origin and another point r2

located on the z axis is applied, then Eq. (49) can be rewritten as

P(r) = C
+(r) + ⇢

Z 1

0

Z
⇡

0

C
+(r3)P(|r3 � r2|)2⇡(r3)

2 sin ✓dr3d✓3, (144)

where r ⌘ |r1 � r2| = |r2|, r3 ⌘ |r1 � r3| = |r3|, and ✓3 = cos�1[r2 · r3/(rr3)]. In Eq.

(144), the short-range feature of C+(r3) allows relation 0 < r3/r ⌧ 1 to be maintained for a

large r. Thus, the Maclaurin series expansion for P(|r3 � r2|) found in Eq. (144) is e↵ective

for representing the behavior of P(r) at a large r. Then, the Maclaurin series expansion

corresponds to

P(|r3 � r2|) =
1X

m=0

1

m!

@
m

@r
m

3

P(r32)
���
r3=0

(r3)
m
, (145)

where r32 ⌘ |r3 � r2| = [(r3)2 � 2r3r cos ✓3 + r
2]1/2 = r[(r3/r)2 � 2(r3/r) cos ✓3 + 1]1/2.

The substitution of the Maclaurin series expansion given by Eq. (145) allows Eq. (144)

to be given as

1� ⇢ bC+(0)

�
P(r) = C

+(r)+⇢ bC+(2)
r

2
P(r)

+
9

4
⇢ bC+(4)�rP(r) + · · · , (146)

where

�r ⌘
8

15

1

r

@
3

@r3
+

2

15

@
4

@r4
.
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The coe�cient bC+(↵) (↵ = 0, 2, 4) is defined by Eq. (116), and it is given as follows:

bC+(↵) =

✓
1

6

◆↵/2 Z

V

C
+(|r3|)|r3|

↵dr3, (↵ = 0, 2, 4). (147)

In Eq. (146), the factor 9

4
⇢ bC+(4)�rP(r) corresponds to a correction term under the condition

that the value of r is not large, although its value is out of the microscopic range in which

C
+(r) 6= 0 is satisfied.

If the polar coordinate system with a point r1 located at the origin and another point r2

located on the z axis is applied, then Eq. (52) can be rewritten as

H(r) =C
⇤(r) + ⇢

Z 1

0

Z
⇡

0

C
⇤(r3)P(|r3 � r2|)2⇡(r3)

2 sin ✓3dr3d✓3

+⇢

Z 1

0

Z
⇡

0

C
+(r3)H(|r3 � r2|)2⇡(r3)

2 sin ✓3dr3d✓3

+⇢

Z 1

0

Z
⇡

0

C
⇤(r3)H(|r3 � r2|)2⇡(r3)

2 sin ✓3dr3d✓3, (148)

The Maclaurin series expansion for H(|r3 � r2|) corresponds to

H(|r3 � r2|) =
1X

m=0

1

m!

@
m

@r
m

3

H(r32)
���
r3=0

(r3)
m
. (149)

The substitution of the Maclaurin series expansions given by Eqs. (145) and (149) allows

Eq. (148) to be given as

1� ⇢bc(0)

�
H(r) =C

⇤(r) + ⇢ bC⇤(0)
P(r)

+⇢ bC⇤(2)
r

2
P(r) + ⇢bc(2)r2

H(r)

+
9

4
⇢ bC⇤(4)�rP(r) +

9

4
⇢bc(4)�rH(r) + · · · , (150)

where the coe�cients bC⇤(↵) and bc(↵) (↵ = 0, 2, 4) are given by Eq. (116) as follows:

bC⇤(↵) =

✓
1

6

◆↵/2 Z

V

C
⇤(|r3|)|r3|

↵dr3, (↵ = 0, 2, 4), (151)

and

bc(↵) ⌘
✓
1

6

◆↵/2 Z

V

c(|r3|)|r3|
↵dr3, (↵ = 0, 2, 4). (152)

Then, the following relation is satisfied:

bc(↵) = bC+(↵) + bC⇤(↵)
, (↵ = 0, 2, 4) (153)
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In Eq. (150), factors 9

4
⇢k
bC⇤(4)�rP(r) and 9

4
⇢bc(4)�rH(r) correspond to correction terms under

the condition that the value of r is not large, although its value is out of the microscopic

range in which C
+(r) 6= 0 and C

⇤(r) 6= 0 are satisfied.

( b ) Di↵erential equations for two correlation functions

If the correction terms in Eqs. (146) and (150) are ignored, then simple di↵erential equa-

tions for P(r) and H(r) are given for a single-component fluid47. The di↵erential equations

are expressed as

P(r) =
h
1� ⇢ bC+(0)

i�1h
C

+(r) + ⇢ bC+(2)
r

2
P(r)

i
(154)

and

H(r) =
h
1� ⇢bc(0)

i�1h
C

⇤(r) + ⇢ bC⇤(0)
P(r) + ⇢ bC⇤(2)

r
2
P(r) + ⇢bc(2)r2

H(r)
i
. (155)

In the two above di↵erential equations, the behavior of the two di↵erentiated correlation

functions should be noted. Unless the condition of the fluid goes beyond the percolation

threshold, the behavior of P(r), which satisfies a relation given by Eq. (48), allows r2
P(r)

to satisfy

lim
V!1

⇢

Z

V

r
2
P(r)dr = 0, (156)

because of Gauss’ theorem. Similarly, the behavior of D(r) (= H(r) + 1), which satisfies

another relation given by Eq. (48), allows r2
H(r) to satisfy

lim
V!1

⇢

Z

V

r
2
H(r)dr = 0. (157)

Equations (156) and (157) should be satisfied, even at the percolation threshold. The

relation should, however, result in failure if a fluid includes extremely large physical clusters

developed under conditions beyond the percolation threshold.

If Eqs. (156) and (157) are satisfied, Fourier transforms of Eqs. (154) and (155) result in

lim
k!0

eP(k) =
h
1� ⇢ bC+(0)

i�1

lim
k!0

eC+(k) (158)

and

lim
k!0

eH(k) =
h
1� ⇢bc(0)

i�1

lim
k!0

h
eC⇤(k) + ⇢ bC⇤(0) eP(k)

i
. (159)
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Here, a Fourier transform of each correlation function is expressed as the form symbolized

by Eq. (87). If a fluid does not include extremely large physical clusters developed under

conditions beyond the percolation threshold, then the solutions obtained from Eqs. (154)

and (155) satisfy Eqs. (158) and (159).

Fourier transforms of the integral equations given by Eqs. (49) and (52) should be com-

pared with Eqs. (158) and (159), respectively. Their Fourier transforms allow Eqs. (49) and

(52) to be rewritten as follows:

lim
k!0

eP(k) = lim
k!0

h
1� eC+(k)

i�1 eC+(k), (160)

and

lim
k!0

eH(k) = lim
k!0

h
1� eC+(k)� eC⇤(k)

i�1h eC⇤(k) + eC⇤(k) eP(k)
i
. (161)

These results denote that Eqs. (160) and (161) are equivalent to Eqs. (158) and (159),

respectively, because eC+(0) = ⇢ bC+(0) and eC⇤(0) = ⇢ bC⇤(0) are satisfied.

A Fourier transform of the Ornstein–Zernike equation, given by Eq. (15) with Eqs. (16)

and (17), allows a formula for a single-component fluid to be obtained as follows:

lim
k!0

eh(k) = lim
k!0

h
1� ec(k)

i�1

ec(k). (162)

Here, an equation system formed by Eqs. (160) and (161) is equivalent to Eq. (162) because

of relations ec(k) = eC+(k) + eC⇤(k) and eh(k) = eP(k) + eH(k).

This demonstrates that the compressibility that is estimated from P(r) and H(r) derived

from Eqs. (154) and (155) is equivalent to that estimated from P(r) and H(r) derived from

the two integral equations corresponding to Eqs. (49) and (52) unless a fluid includes ex-

tremely large physical clusters developed under conditions beyond the percolation threshold.

The sum of two factors eP(0) + eH(0) is expressed as

eP(0) + eH(0) ⌘ lim
V!1

⇢

Z

V

[g(r)� 1]dr (r ⌘ |r|).

Then, Eq. (18) allows the compressibility (1/�)
�
@⇢/@P

�
V,T

of a single-component fluid to

be given as follows:

�

✓
@P

@⇢

◆

V,T

��1

= lim
k!0

h
eP(k) + eH(k)

i
+ 1. (163)

Based on Eq. (163), the compressibility estimated from the two di↵erential equations Eqs.

(154) and (155) is equal to that estimated from the two integral equations Eqs. (49) and (52)
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unless a fluid includes extremely large physical clusters developed under conditions beyond

the percolation threshold.

When the compressibility is estimated from the use of Eq. (163), P(r) andH(r) estimated

from Eqs. (154) and (155), respectively can be equivalent to P(r) and H(r) estimated from

Eqs. (49) and (52), respectively. In this case, P(r) and H(r) given as solutions satisfying

Eqs. (154) and (155) are adequate approximations for examining the cooperation between

particles contributing to the magnitude of P(r) and particles contributing to the magnitude

of H(r). Eqs (158) and (159), which are derived from the two di↵erential equations given

by Eqs. (154) and (155), allow the compressibility to be given by (1/�)
�
@⇢/@P

�
V,T

=
⇥
1�

⇢bc(0)
⇤�1

. In addition, Eqs (160) and (161), which are derived from the two integral equations,

allow the compressibility to be given by (1/�)
�
@⇢/@P

�
V,T

=
⇥
1�⇢bc(0)

⇤�1

with ⇢bc(0) = ⇢bc(0).

These estimates of the compressibility demonstrate that correlation functions P(r) and H(r)

satisfying the two di↵erential equations are equivalent to those which satisfy the two integral

equations corresponding to Eqs. (49) and (52) unless a fluid includes extremely large physical

clusters developed beyond the percolation threshold.

In addition, if Eqs. (160) and (161) are considered with ec(0) = eC+(0) + eC⇤(0), Eq. (163)

is rewritten as

�

✓
@P

@⇢

◆

V,T

��1

=
eC+(0)

1� eC+(0)
+

eC⇤(0) + eC⇤(0) eP(0)

1� eC+(0)� eC⇤(0)
+ 1 (164)

=
1

1� eC+(0)� eC⇤(0)
(165)

=
1

1� ⇢bc(0) . (166)

The compressibility diverges to infinity at the liquid-vapor critical point. This denotes that

relation 1� ⇢bc(0) = 0 is then satisfied.

( c ) Solutions for di↵erential equations48

i ) Di↵erential equations without terms including C
+(r), C⇤(r), ⇢ bC⇤(0), and ⇢ bC⇤(2)

A solution P0(r) that is obtained from Eq. (154) described without C
+(r) must satisfy

the following relation:
h
r

2
� (⇠+)2

i
P0(r) = 0, (167)
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where the coe�cient ⇠+ is defined as

⇠
+
⌘

✓
1� ⇢ bC+(0)

⇢ bC+(2)

◆1/2

. (168)

The solution P0(r) should satisfy a relation limr!1 P0(r) = 0. Hence,

P0(r) = P(�+)
e
�⇠

+
(r��)

r/�
, (169)

P0(r) satisfies the boundary condition lim�!0 P0(r)
��
r=�+�

= P(�+).

A solution H0(r) that is obtained from Eq. (155) described without the three terms

including C
⇤(r), ⇢ bC⇤(0), and ⇢ bC⇤(2) must satisfy the following relation:

h
r

2
� ⇠

2

i
H0(r) = 0, (170)

where the coe�cient ⇠ is defined as

⇠ ⌘

✓
1� ⇢bc(0)

⇢bc(2)

◆1/2

. (171)

The solution H0(r) should satisfy a relation limr!1 H0(r) = 0. Hence,

H0(r) = H(�+)
e
�⇠(r��)

r/�
, (172)

H0(r) satisfies the boundary condition lim�!0 H0(r)
��
r=�+�

= H(�+).

ii ) Simple forms of Eqs. (154) and (155)

If Eqs. (154) and (155) are rewritten, then simple forms of the di↵erential equations are

found. For Eq. (154),

h
r

2
� (⇠+)2

i
P(r) = C̆

+(r), (173)

where

C̆
+(r) ⌘

1

⇢ bC+(2)

C
+(r). (174)

For Eq. (155),

h
r

2
� ⇠

2

i
H(r) = C̆

⇤(r), (175)

where

C̆
⇤(r) ⌘

1

⇢bc(2)
n
C

⇤(r) +
h
⇢ bC⇤(0) + ⇠

+2
⇢ bC⇤(2)

i
P(r)�

bC⇤(2)

bC+(2)

C
+(r)

o
. (176)
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Then, coe�cients ⇢bc(0) and ⇢bc(2) are obained from solving the Ornstein–Zernike equa-

tion. Coe�cients bC⇤(0) and ⇢ bC⇤(2) are determined owing to Eq. (51) without solving integral

equation Eq. (52). Coe�cients ⇢ bC+(0) and ⇢ bC+(2) are estimated from solving integral equa-

tion Eq. (49). In addition, the above coe�cients are estimated based on assuming that the

characteristic of the pair potential contributing to the mutual attractive force between two

particles is independent of the relative momentum of the two particles.

iii ) Solution for Eq. (173) with C
+(r) 6= 0

In order to obtain exact solutions satisfying the di↵erential equation Eq. (173), the fluid

system should be imaginarily divided into the internal area of a spherical region of radius

r and the external area of the spherical region. Then, the center of the spherical region is

located at the origin t = 0 of a spherical coordinate.

A bound state where the contribution of the mutually attractive force between two par-

ticles exceeds the contribution of the relative kinetic energy is specified by an f
+-bond. The

correlation that is generated between a particle at t = 0 and another particle at t = r via

at least one path of particles linked by only f
+-bonds is given by the sum of two partial

contributions. One of the two partial contributions results from particles distributed inside

a spherical region of radius r. This is estimated from the di↵erential equation given by Eq.

(173), and it is given by

Pin(r) = �
⇠
+
�

⇢ bC+(2)/�2

h
(1)

0
(i⇠+r)

Z
r

�

G(⇠+; t)C+(t)

✓
t

�

◆2 1

�
dt,

(t < r), (177)

where G(⇠+; t) is defined using the spherical Bessel function j0(⌧) and the spherical Hankel

function of the first kind h
(1)

0
(⌧). The function G(⇠+; t) is expressed as

G(⇠+; t) ⌘ j0(i⇠
+
t)�

j0(i⇠+�)

h
(1)

0
(i⇠+�)

h
(1)

0
(i⇠+t), (178)

where

j0(⌧) = ⌧
�1 sin ⌧

and

h
(1)

0
(⌧) = i⌧

�1
e
�i⌧

.
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The remainder of the two partial contributions results from particles distributed outside the

spherical region. This is estimated from the di↵erential equation given by Eq. (173), and it

is given by

Pex(r) = �
⇠
+
�

⇢ bC+(2)/�2

G(⇠+; r)

Z 1

r

h
(1)

0
(i⇠+t)C+(t)

✓
t

�

◆2 1

�
dt,

(r < t). (179)

In Eqs. (177) and (179), the product h(1)

0
G can be expressed as follows:

h
(1)

0
(i⇠+r)G(⇠+; t) = �

e
�⇠

+
(r�t)

2⇠+r⇠+t
+

✓
1 +

2 sinh ⇠+�

e�⇠+�

◆
e
�⇠

+
(r+t)

2⇠+r⇠+t
, (180)

G(⇠+; r)h(1)

0
(i⇠+t) = �

e
�⇠

+
(t�r)

2⇠+t⇠+r
+

✓
1 +

2 sinh ⇠+�

e�⇠+�

◆
e
�⇠

+
(t+r)

2⇠+t⇠+r
. (181)

The pair connectedness P(r) given as an exact solution satisfying Eq. (173) is expressed

by the sum of Eqs. (169), (177) and (179), i.e.,

P(r) = P0(r) + Pin(r) + Pex(r). (182)

Ultimately, Eq. (182) results in

P(r) = P0(r)�M
+
e
�⇠

+
r

2⇠+r
+

e
�⇠

+
r

2⇠+r

Z
r

�

e
⇠
+
t
C̆

+(t)tdt+
e
⇠
+
r

2⇠+r

Z 1

r

e
�⇠

+
t
C̆

+(t)tdt, (183)

where

M
+
⌘ e

2⇠
+
�

Z 1

�

C̆
+(t)e�⇠

+
t
tdt. (184)

If Eqs. (77), (78), (79), and (169) are considered, Eqs. (183) and (184) are estimated as

follows:

P(r) = �cM+
e
�⇠

+
r

2⇠+r
+

1

2⇠+r

⇥
I
(�)(�, r) + I

(+)(r,1)
⇤
, (185)

where

cM+
⌘ �2⇠+�e�⇠

+
�
P(�+) +M

+
, (186)

M
+ =

⌅0

(z(+)�)1/2
e
2⇠

+
��(1/2, z(+)

�), (187)

I
(+)(r,1) ⌘ ⌅0e

⇠
+
r

1

�1/2

Z 1

r

e
�z

(+)
t
t
�1/2dt, (188)
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I
(�)(�, r) ⌘ ⌅0e

�⇠
+
r

1

�1/2

Z
r

�

e
�z

(�)
t
t
�1/2dt, (189)

⌅0 ⌘
4

3
p
⇡

(�Ke
�
/�)3/2

⇢ bC+(2)/�2

, (190)

and

z
(±)

⌘
3

2
± ⇠

+
. (191)

The integration expressed by Eq. (188) is performed as follows:

I
(+)(r,1) = ⌅0

e
�⇠

+
r

(z(+)�)1/2
⇥
�(1/2)� �(1/2, z(+)

r)
⇤
. (192)

Similarly, the integration expressed by Eq. (189) is performed. For 0 < z
(�),

I
(�)(�, r) = ⌅0

e
�⇠

+
r

(z(�)�)1/2
⇥
�(1/2, z(�)

r)� �(1/2, z(�)
�)
⇤
, (193)

and for z(�)
 0,

I
(�)(�, r) = ⌅0


e
�(3/2)r

(�z(�)�)1/2(�z(�)r)1/2
�(�z

(�)
r)

�
e
�⇠

+
r
e
�z

(�)
�

(�z(�)�)1/2(�z(�)�)1/2
�(�z

(�)
�)

�
, (194)

where

�(�⇣r) ⌘
1X

k=1

(�1)k�1
(�2⇣r)k

(2k � 1)!!
, (⇣  0). (195)

In addition, ⌅0 is a dimensionless coe�cient. Coe�cients bC+(0) and bC+(2) are estimated

by using Eqs. (120) and (121), respectively.

iv ) Solution for Eq. (175) with C̆
⇤(r) 6= 0

In order to obtain exact solutions satisfying di↵erential equation Eq. (175), the fluid

system should be imaginarily divided into the internal area of a spherical region of radius

r and the external area of the spherical region. Then, the center of the spherical region is

located at the origin t = 0 of a spherical coordinate.

An unbound state where the contribution of the relative kinetic energy of two particles

exceeds the contribution of the mutually attractive force is specified by an f
⇤-bond. The
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correlation that is generated between a particle at t = 0 and another particle at t = r via

particles linked through each path that includes f ⇤-bonds is given by the sum of two partial

contributions. One of the two partial contributions comes from particles distributed within

a spherical region of radius r with its center located at the origin, t = 0. This is estimated

from the di↵erential equation given by Eq. (175), and it can be divided into two parts as

C̆
⇤(r) is defined by Eq. (176). One part involves the e↵ects of physical cluster formation

and is given by

H
(+)

in
(r) =�

⇠�

⇢bc(2)/�2
h
(1)

0
(i⇠r)

Z
r

�

G(⇠; t)

⇥

nh
⇢ bC⇤(0) + ⇠

+2
⇢ bC⇤(2)

i
P(t)�

bC⇤(2)

bC+(2)

C
+(t)

o✓
t

�

◆2 1

�
dt, (t < r). (196)

The other part is non-zero even if physical clusters do not exist, and it is given by

H
(⇤)
in
(r) = �

⇠�

⇢bc(2)/�2
h
(1)

0
(i⇠r)

Z
r

�

G(⇠; t)C⇤(t)

✓
t

�

◆2 1

�
dt, (t < r). (197)

The remainder of the two partial contributions results from particles distributed outside

the spherical region. This is estimated from the di↵erential equation given by Eq. (175),

and it can be divided into two parts as C̆
⇤(r) is defined by Eq. (176). One part involves

e↵ects of the physical cluster formation and is given by

H
(+)

ex
(r) =�

⇠�

⇢bc(2)/�2
G(⇠; r)

Z 1

r

h
(1)

0
(i⇠t)

⇥

nh
⇢ bC⇤(0) + ⇠

+2
⇢ bC⇤(2)

i
P(t)�

bC⇤(2)

bC+(2)

C
+(t)

o✓
t

�

◆2 1

�
dt, (r < t). (198)

The other part is nonzero even if physical clusters do not exist, and it is given by

H
(⇤)
ex
(r) = �

⇠�

⇢bc(2)/�2
G(⇠; r)

Z 1

r

h
(1)

0
(i⇠t)C⇤(t)

✓
t

�

◆2 1

�
dt, (r < t). (199)

In Eqs. (196), (197), (198), and (199), the product h(1)

0
G has the same form as that expressed

by Eqs. (180) and (181).

The correlation function H(r) given as an exact solution satisfying Eq. (155) is expressed

as the sum of Eqs. (172), (196), (197), (198), and (199), i.e.,

H(r) = H0(r) +H
(+)

in
(r) +H

(+)

ex
(r) +H

(⇤)
in
(r) +H

(⇤)
ex
(r). (200)

Thus, if relation given by Eq. (176) is considered, Eq. (200) allows the correlation function

H(r) to be given as follows:

H(r) = H0(r)�M
⇤ e

�⇠r

2⇠r
+

e
�⇠r

2⇠r

Z
r

�

e
⇠t
C̆

⇤(t)tdt+
e
⇠r

2⇠r

Z 1

r

e
�⇠t

C̆
⇤(t)tdt, (201)
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where

M
⇤
⌘ e

2⇠�

Z 1

�

C̆
⇤(t)e�⇠t

tdt. (202)

In addition, the coe�cients bc(0), bC⇤(0), bc(2), and bC⇤(2) are estimated from using Eqs. (120),

(121), (139), and (140) with Eq. (153).

If the physical cluster formation is ignored, then correlation functions satisfy P(r) = 0,

C
+(r) = 0, and C̆

⇤(r) = C
⇤(r)/(⇢bc(2)) for 0 < r. The pair correlation function g(r) is related

to H(r) as g(r) = P(r) +H(r) + 1. When the physical cluster formation is ignored with a

requirement ⇠ = 0, the relationship between g(r) and H(r) allows Eq. (201) to result in

g0(r)� 1 = H(r)

= H(�+)
�

r
+

✓
�Ke

�
/�

�⇢bc(2)/�2

◆
e
��

� e
�r

r
, (for 1 ⌧ r/�), (203)

where g0(r) denotes g(r) satisfying the requirement formed by both ⇠ = 0 and no contri-

bution of physical clusters. Equation (203) obtained from the requirement formed by no

physical clusters and ⇠ = 0 allows the behavior of g0(r)�1 for a large r to be approximately

expressed by g0(r)� 1 ⇠ r
�1 .
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7. Features of correlation functions near critical point
48

( a ) E↵ects of physical cluster formation on behavior of correlation functions

When the compressibility given as (1/�)
�
@⇢/@P

�
V,T

= 1/(1 � ⇢bc(0)) diverges to infinity,

the coe�cient ⇠ becomes zero. This does not mean that the coe�cient ⇠
+ becomes zero

because the critical point does not generally coincide with the percolation threshold that

results in ⇠
+ = 0. Hence, the coe�cient ⇠+ can have a finite value that is nonzero even when

⇠ becomes zero. Considering this, estimation of Eq. (201) must be performed in the general

conditions that ⇠ 6= 0 is satisfied and the contributions of physical clusters are involved.

Equation (201) includes many terms of integration because C̆⇤(t) is defined by Eq. (176)

with P(t) given by Eq. (185). To express Eq. (201) in a simple manner, a function �(⇣)(a, b),

which is dimensionless, is defined as follows:

�(⇣)(a, b) ⌘
1

�1/2

Z
b

a

e
�⇣t

t
�1/2dt (204)

For 0 < ⇣,

�(⇣)(a, b) =
1

(⇣�)1/2


� (1/2, ⇣b)� � (1/2, ⇣a)

�
. (205)

For 0 < ⇣ and large ⇣a, limb!1�(⇣)(a, b) behaves as follows:

lim
b!1

�(⇣)(a, b) ⇡
1

p
⇣�

1
p
⇣a

e
�⇣a

. (206)

For ⇣  0,

�(⇣)(a, b) =
1

�⇣�

⇣
�

b

⌘1/2

e
�⇣b�(�⇣b)�

⇣
�

a

⌘1/2

e
�⇣a�(�⇣a)

�
, (207)

where �(�⇣r) is defined by Eq. (195).

Eq. (201) includes integration expressed in a specific form. If the integral is expressed as

I(±⇠)(C̆⇤; a, b), then it is dimensionless and is given as

I(⌥⇠)(C̆
⇤; a, b) ⌘

Z
b

a

e
�(⌥⇠)t

C̆
⇤(t)tdt. (208)

Then, the use of �(⇣)(a, b) allows the substitution of Eq. (176) into Eq. (208) to result in

I(⌥⇠)(C̆
⇤; a, b)=

�
2

⇢bc(2)

⇢
�Ke

�
/�

�z
(⌥⇠)

 �
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exp(�z
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b)� exp(�z
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⇤

�
4

3
p
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(�Ke

�
/�)3/2

bC⇤(2)

bC+(2)

�
(z

(⌥⇠)
3/2 )

(a, b) + [⇢ bC⇤(0) + (⇠+�)2⇢ bC⇤(2)
/�

2]

⇥

h
�J

(⌥⇠)

cM+
(a, b) + J

(⌥⇠)

I� (a, b) + J
(⌥⇠)

I+
(a, b)

i�
, (209)
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where

J
(⌥⇠)

cM+
(a, b)⌘

cM+

2⇠+�2

Z
b

a

exp(�z
(⌥⇠)

t)dt

=
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2⇠+�

1

(�z(⌥⇠)�)

⇥
exp(�z

(⌥⇠)
b)� exp(�z
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a)
⇤
, (210)
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1
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Z
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exp[�(⌥⇠)t]I�(�, t)dt

=
⌅0
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1

(�z(⌥⇠)�)

h
exp(�z

(⌥⇠)
b)�

(z(�))(�, b)� exp(�z
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a)�
(z(�))(�, a)
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2⇠+�

1

(�z(⌥⇠)�)
�

(z
(⌥⇠)
3/2 )

(a, b), (211)

and

J
(⌥⇠)

I+
(a, b) ⌘

1

2⇠+�2

Z
b

a

exp[�(⌥⇠t)]I+(t,1)dt

=
⌅0

2⇠+�

1

z(±⇠)�

h
exp(z(±⇠)

b)�
(z(+))(b,1)� exp(z(±⇠)

a)�
(z(+))(a,1)

i

+
⌅0

2⇠+�

1

z(±⇠)�
�

(z
(⌥⇠)
3/2 )

(a, b), (212)

with

z
(±⇠)

3/2
⌘

3

2
± ⇠, (213)

z
(±⇠)


⌘ ± ⇠, (214)

z
(±⇠)

⌘ ⇠
+
± ⇠. (215)

z
(±) is defined by Eq. (191). If I(±⇠)(C̆⇤; a, b) given by Eq. (209) is used, then Eq. (201) is

exactly estimated as follows:

H(r) = H0(r)� e
2⇠�

e
�⇠r

2⇠r
I(+⇠)(C̆

⇤; �,1) +
e
�⇠r

2⇠r
I(�⇠)(C̆

⇤; �, r) +
e
⇠r

2⇠r
I(+⇠)(C̆

⇤; r,1),

(216)

where H0(r) is given by Eq. (172).

The behavior of a correlation function g(r)� 1 is expressed by the sum of Eq. (185) and

Eq. (216). The sum is given as follows:

g(r)� 1 =H(�+)
e
�⇠(r��)

r/�
� cM+

e
�⇠

+
r

2⇠+r
+

1

2⇠+r

⇥
I
(�)(�, r) + I

(+)(r,1)
⇤

�e
2⇠�

e
�⇠r

2⇠r
I(+⇠)(C̆

⇤; �,1) +
e
�⇠r

2⇠r
I(�⇠)(C̆

⇤; �, r) +
e
⇠r

2⇠r
I(+⇠)(C̆

⇤; r,1). (217)

96



Equation (217) is adequate even when 0  ⇠ and 0  ⇠
+ are both satisfied. A point on

the spinodal curve where ⇠� = 0 (� > 0) is satisfied corresponds a critical condition before

the occurrence of a phase separation. At the critical point corresponding to the maximum

point on the spinodal curve, ⇠� = 0 is satisfied. The condition where ⇠
+
� = 0 is specified

corresponds to the percolation threshold; hence, the mean size of physical clusters at ⇠+� = 0

reaches the maximum infinity.

( b ) Dependence of behavior of correlation functions on physical cluster formation

Even in a specific condition where ⇠� = 0 and 0  ⇠
+
� are satisfied, Eq. (217) is adequate.

In this condition, Eq. (217) allows the estimation of g(r)�1. Hence, the behavior of g(r)�1

for a large r satisfying 1 ⌧ (r � �)/� can be expressed even at the critical point by Eq.

(217).

Because �
�
@P/@⇢

�
V,T

= 0 is satisfied at every point on the spinodal curve specified in

the phase diagram of a fluid, ⇠� given by Eqs. (166) and (171) equals zero (� 6= 0) on the

spinodal curve. If the maximum point of the spinodal curve is a point specified by T = Tc

and � = �c, the liquid–vapor critical point correspond to a point represented by [Tc, �c].

Here, � represents the volume fraction defined as � ⌘ (⇡/6)⇢�3.

The relation ⇠
+
� = 0 (� 6= 0) is satisfied at every point on the curved line that expresses

the percolation threshold in the phase diagram. The mean physical cluster size S given by

Eq. (93) is related to ⇠
+ because of Eqs. (120) and (168) as

⇠
+ =

⇣
S⇢ bC+(2)

⌘�1/2

. (218)

Hence, every specific condition where ⇠
+
� = 0 is satisfied corresponds to the percolation

threshold.

If physical clusters do not exist at the critical point, i.e., [Tc, �c], then g(r) given by Eq.

(217) becomes equivalent to g0(r) given by Eq. (203). If P(r) = 0 and C
+(r) = 0 are satisfied

independently of r, then g(r) expressed for ⇠� = 0 by Eq. (217) becomes equivalent to g0(r)

expressed by Eq. (203). When P(r) = 0 and C
+(r) = 0 are satisfied independently of r, the

fluid system includes no physical clusters. Thus, the behavior of g(r) that is equivalent to

g0(r) is characterized by g(r)� 1 ⇠ r
�1 for a large r satisfying 1 ⌧ (r � �)/�.

For a Yukawa fluid characterized by a specific value of �, the spinodal curve coincides

at two points with the curved line. If one of them is specified by [Tp,�p], the other is
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(b)  κσ=2.4,  φ=0.14263, σ/βK=0.78,    [ξσ =0.911; S=22]
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(c)  κσ=2.4,  φ=0.122, σ/βK=0.694663,  [ξσ =0.369; S=26.4]

FIG. 17. Dependences of P(r), H(r), g(r), and g0(r) on r for � = 2.4 (f⌫ = 0.101853). Each

curved line is evaluated according to Eqs. (185), (216), (217), and (203). A point at which the

percolation threshold coincide with the spinodal curve is located at [Tp, �p]; the critical point is the

locus specified by Tc ⇡ Tp, and �c ⇡ �p + 0.032. In (a), each curved line is obtained for �/�K =

0.694663 and � = 0.14263 which correspond to T ⇡ Tp and � ⇡ �p; the fluid is characterized by

[S = 9.01 ⇥ 1015, ⇠� = 8.79 ⇥ 10�8]. In (b), each curved line is obtained for �/�K = 0.78 and

� = 0.14263 whcih corresponds to T > Tp and � ⇡ �p; the fluid is characterized by [S = 22,

⇠� = 0.911]. In (c), each curved line is obtained for �/�K = 0.694663 and � = 0.122 which

corresponds to T ⇡ Tp and � ⇡ �p � 0.206; the fluid is characterized by [S = 26.4, ⇠� = 0.369].
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specified by [T 0
p
,�

0
p
], and the relationship between them satisfy T

0
p
< Tp and �

0
p
< �p. For

� = 1.6 characterizing a mutual attractive force with a more long-ranged feature than that

for � = 1.8, Tp ⇡ Tc and (�p � �c)/�c ⇡ 0.14 are satisfied. For � = 1.8 characterizing

a mutual attractive force with a less long-ranged feature than that for � = 1.6, Tp ⇡ Tc

and (�p � �c)/�c ⇡ 0.05 are satisfied. For � = 2.4 characterizing a mutual attractive force

with a less long-ranged feature than that for � = 1.8, Tp ⇡ Tc and (�p � �c)/�c ⇡ �0.18

are satisfied.

If physical clusters exist at the critical point, then the behavior of the pair correlation

function for a large r must deviate from g(r) � 1 ⇠ r
�1. Then, the relationship between

g(r) given by Eq. (217) and g0(r) given by Eq. (203) is characterized by g(r) 6= g0(r). The

behavior of g(r) expressed by subfigure (a) in Figs. 17, 18, and 19 demonstrates that relation

g(r) > g0(r) is satisfied at a point near the spinodal curve where 0 < ⇠� ⌧ 1 is satisfied.

Even in a fluid system including only small sizes of physical clusters, relation g(r) > g0(r)

is satisfied near such a point (⇠� ⇡ 0) over a wide range of r as exemplified by subfigure (a)

in Fig. 19. Thus, the formation of physical clusters at the critical point of a fluid can allow

g(r) to become more long-ranged than g0(r).

If values of parameters for a fluid system deviate from their values that yield ⇠ ⇡ 0 near the

critical point, then g0(r) that is equivalent to g(r) evaluated for ⇠� = 0 with no contribution

of physical clusters can decay at a slower rate than g(r) decays. As a consequence, relation

g(r) < g0(r) for a large r can be found. This can be confirmed by each figure of (b) in

Figs. 17, 18, and 19. Unless ⇠� is su�ciently small, relation g(r) < g0(r) for a large r can

occur even for a small ⇠� as exemplified by figure (b) in Fig. 19.

Unless ⇠� is su�ciently small, relation g(r) < g0(r) for a large r can occur even for a fluid

system that includes extremely large physical clusters. This is confirmed from each figure (a)

in Figs. 20 and 21. The value of ⇠� that is not su�ciently small aids in making g(r) decay

rapidly. Even if values of parameters characterizing the fluid system allow ⇠
+
� ⇡ 0, their

values cannot allow the value of ⇠� to be su�ciently small. Hence, relation g(r) < g0(r)

occurs as demonstrated by each figure (a) in Figs. 20 and 21 although large physical clusters

are included in the fluids.

Ultimately, a fluid system that allows relation g0(r) < g(r) to occur requires that values

of parameters characterizing the fluid system cause 0  ⇠� ⌧ 1, i.e., a su�ciently small

magnitude and cause 1/(⇠+�) 6= 0. The mean physical cluster size S given by Eq. (93) is
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(a)  κσ=1.8, φ=0.161423, σ/βK=1.0314 [ξσ =4.2E-08; S=146]
P(r) H(r) g(r) g0(r); ξσ=0 & no cluster 
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(b)  κσ=1.8,  φ=0.161423,  σ/βK=1.26,    [ξσ =1.35; S=6.4] 
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(c)  κσ=1.8,  φ=0.126,  σ/βK=1.0314,    [ξσ =0.315; S=8.0]

FIG. 18. Dependences of P(r), H(r), g(r), and g0(r) on r for � = 1.8 (f⌫ = 0.101853). Each

curved line is evaluated on basis of Eqs. (185), (216), (217), and Eq. (203). The critical point

is the locus specified by Tc ⇡ Tp, and �c ⇡ �p � 0.008. In (a), each curved line is obtained for

�/�K = 1.0314 and � = 0.161423 which correspond to T ⇡ Tp and � ⇡ �p � 0.008; the fluid is

characterized by [S = 146, ⇠� = 4.2⇥ 10�8]. In (b), each curved line is obtained for �/�K = 1.26

and � = 0.161423 which corresponds to T > Tp and � ⇡ �p � 0.008; the fluid is characterized by

[S = 6.4, ⇠� = 1.35]. In (c), each curved line is obtained for �/�K = 1.0314 and � = 0.126 which

corresponds to T ⇡ Tp and � ⇡ �p � 0.035; the fluid is characterized by [S = 6.4, ⇠� = 1.35].
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(a)  κσ=1.6, φ=0.15674, σ/βK=1.2088  [ξσ =1.903E-07; S=22.2]

P(r) H(r) g(r) g0(r); ξσ=0 & no cluster 
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(c)  κσ=1.6,  φ=0.132, σ/βK=1.2088  [ξσ =0.186; S=6.9]
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(b)  κσ=1.6,   φ=0.15674,  σ/βK=1.35,    [ξσ =0.857; S=7.1]

FIG. 19. Behaviors of P(r), H(r), g(r), and g0(r) for � = 1.6 (f⌫ = 0.101853). Each curved line is

evaluated on basis of Eqs. (185), (216), (217), and Eq. (203). In (a), each curved line is obtained for

�/�K = 1.2088 and � = 0.15674 which correspond to T > Tp and � ⇡ �p�0.02; the critical point is

the locus specified by Tc ⇡ T and �c ⇡ �; the fluid is characterized by [S = 22.2, ⇠� = 1.903⇥10�7].

In (b), each curved line is obtained for �/�K = 1.35 and � = 0.15674 which corresponds to T > Tp,

T > Tc, and � ⇡ �p � 0.02; the fluid is characterized by [S = 7.1, ⇠� = 0.857]. In (c), each curved

line is obtained for �/�K = 1.2088 and � = 0.132 which corresponds to T > Tp, T ⇡ Tc, and

� ⇡ �p � 0.046; the fluid is characterized by [S = 7.1, ⇠� = 0.857].
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(c)  κσ=2.4,  φ=0.14, σ/βK=0.79529  [ξσ =1.04; S=14.8]
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(b)  κσ=2.4,  φ=0.17472,  σ/βK=0.92  [ξσ =1.82;  S=15.1]
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(a)  κσ=2.4,  φ=0.17472, σ/βK=0.79529  [ξσ =0.974; S=7.33E+12]

P(r) H(r) g(r) g0(r); ξσ=0 & no cluster 

FIG. 20. Dependences of P(r), H(r), g(r), and g0(r) on r for � = 2.4 (f⌫ = 0.101853) in loci far

from critical point. Evaluations are based on Eqs. (185), (216), (217), and Eq. (203). In (a), each

curved line is obtained for �/�K = 0.79529 and � = 0.17472; the fluid condition is characterized as

T ⇡ Tp, � ⇡ �p, Tc < T , and �c ⇡ �; features of the fluid are [S = 7.33⇥1012, ⇠� = 0.974]. In (b),

each curved line is obtained for �/�K = 0.92 and � = 0.17472; the fluid condition is characterized

as T > Tp, � ⇡ �p, Tc < T , and � ⇡ �c; features of the fluid are [S = 15.1, ⇠� = 1.82]. In (c), each

curved line is obtained for �/�K = 0.79529 and � = 0.14; the fluid condition is characterized as

T ⇡ Tp, � ⇡ �p�0.026, Tc < T , and � ⇡ �c�0.026; features of the fluid are [S = 14.8, ⇠� = 1.04].
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related to ⇠
+ by Eq. (218). This demonstrates that the occurrence of relation g0(r) < g(r)

for a large r requires S 6= 0 and ⇠� ⌧ 1. A condition specified by S 6= 0 and ⇠� ⌧ 1

causes the behavior of g(r) that cannot be expressed as the product of r�1 and a particular

function given by a series with respect to positive powers of r.

Even if physical clusters formed in a fluid system is small, their formation causes the

dependence of the pair correlation function on r to deviate from the dependence that is

expressed by g0(r). To explain the deviation from its behavior expressed as g(r) � 1 ⇠

r
�1,18 the contribution of the presence of physical clusters to g(r) should not be ignored.

Representing the pair correlation function as the sum of two correlation functions contributes

to explaining critical phenomena if the presence of physical clusters is not ignored. In

addition, e↵ects yielded by a decrease in � and e↵ects yielded by a decrease in (�/�K)�1

can have similarities. This fact is exemplified by the behaviors of the correlation functions

seen in Figs. 17, 20 and 21.
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(b)  κσ=3.6,  φ=0.19733, σ/βK=0.64 [ξσ=2.92;  S=66.3]
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(a)  κσ=3.6,  φ=0.19733,  σ/βK=0.59647 [ξσ=2.45;  S=6.43E+14]

P(r) H(r) g(r) g0(r); ξσ=0 & no cluster 
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(c)  κσ=3.6,  φ=0.178, σ/βK=0.59647 [ξσ=2.37;  S=69.4]

FIG. 21. Dependences of P(r), H(r), and g(r) on r for � = 3.6 (f⌫ = 0.101853). Evaluations

are based on Eqs. (185), (216), (217), and Eq. (203). In (a), each curved line is obtained for

�/�K = 0.59647 and � = 0.19733; the fluid condition is characterized as T ⇡ Tp, � ⇡ �p, Tc < T ,

and �c ⇡ �; features of the fluid are [S = 6.43 ⇥ 1014, ⇠� = 2.45]. In (b), each curved line is

obtained for �/�K = 0.64 and � = 0.19733; the fluid condition is characterized as T > Tp, � ⇡ �p,

Tc < T , and � ⇡ �c; features of the fluid are [S = 66.3, ⇠� = 2.92]. In (c), each curved line

is obtained for �/�K = 0.59647 and � = 0.178; the fluid condition is characterized as T ⇡ Tp,

� ⇡ �p � 0.019, Tc < T , and � ⇡ �c � 0.019; features of the fluid are [S = 69.4, ⇠� = 2.37].
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8. Fractal structures of physical clusters at percolation threshold
48

( a ) Fractal dimensions of physical clusters

The dependence of P(r) on a large r is given by Eq. (185). However, the form of the

dependence is not clear. It is possible to derive a suitable form from the dependence ex-

pressed by by Eq. (185). The form is expressed as a special product, which is obtained by

multiplying a factor (r/�)�(3�df ) by the remainder. The product is expressed as

P(r) = Cf

⇣
r

�

⌘�(3�df )

, (219)

where coe�cients Cf and df are not constant in general. Under the condition that a fluid

system includes extremely large physical clusters having a fractal structure, Cf and df can

be constant. Then, df represents the fractal dimension of the fractal structure.40 This is

understood from the behavior of the curved line of P(r) specified by S = 9.01 ⇥ 1015 in

Fig. 22.

According to the assumption that Cf and df behave as constant values for variations in

the value of r satisfying |r0 � r|/r0 ⌧ 1 (r0 > �), Cf and df are easily estimated. Then,

the derivative dP(r)/dr at r = r0 is given as dP(r)/dr
���
r=r0

= �(3�df )(r/�)�1
P(r)/�

���
r=r0

.

Hence, the use of P(r0) = Cf (r0/�)
�(3�df ) and dP(r)/dr

���
r=r0

allows Cf to be estimated as

Cf =

"✓
r0

�

◆�1✓
�
1

3
r0
dP(r)

dr

����
r=r0

◆� ln r0/�
✓
P(r0)

◆� 1
3+ln r0/�

#�1/3

. (220)

Similarly, the use of P(r0) = Cf (r0/�)
�(3�df ) and dP(r)/dr

���
r=r0

allows df to be estimated

as

df =

"
�

r0

3P(r0)

dP(r)

dr

����
r=r0

#�1/3

. (221)

Thus, the two unknown coe�cients Cf and df are expressed by the above formulae. Eval-

uations of Cf and df are achieved if P(r) given by Eq. (185) is substituted into Eqs. (220)

and (221). Then, the derivative dP(r)/dr is obtained from the use of Eq. (185) as follows:

dP(r)

dr
=cM+

e
�⇠

+
r

2⇠+r2
(1 + ⇠

+
r)�

1

2⇠+r2
(1 + ⇠

+
r)I(�)(�, r)

�
1

2⇠+r2
(1� ⇠

+
r)I(+)(r,1)

=�(1 + ⇠
+
r)
P(r)

r
+

1

r
I
(+)(r,1). (222)
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FIG. 22. Dependences of P(r) and df on r (f⌫ = 0.101853). Each curved line is evaluated

for � = 3.6 and � = 0.19733 ⇡ �p. Two thick solid curved lines are characterized by a set

[S = 6.43 ⇥ 1014, ⇠� = 2.45] because �/�K = 0.59647 corresponds to T ⇡ Tp near percolation

threshold. Dotted curved line is characterized by [S = 583, ⇠� = 2.60] linked to �/�K = 0.61 (

T > Tp); dashed and single-dotted curved line by [S = 66.3, ⇠� = 2.92] linked to �/�K = 0.64 (

T > Tp); dashed curved line by [S = 9.7, ⇠� = 3.93] linked to �/�K = 0.74 ( T > Tp). P(r) is

evaluated from Eq. (185). df is evaluated from Eq. (221) for r0 ⇡ r.
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(a) κσ=2.4,  φ=0.14263

σ/βK=0.694663  [ξσ =8.79E-08; S=9.01E+15] 

σ/βK=0.697   [ξσ =0.0369; S=18348] 

σ/βK=0.72    [ξσ =0.343; S=181] 

σ/βK=0.78   [ξσ =0.911; S=22] 
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(b) κσ=2.4,  φ=0.17472

σ/βK=0.79529  [ξσ =0.974; S=7.33E+12]

σ/βK=0.798  [ξσ =0.996; S=17866]

σ/βK=0.812  [ξσ =1.11; S=509]

σ/βK=0.92   [ξσ =1.82; S=15.1]

FIG. 23. Dependence of df on r for � = 2.4 (f⌫ = 0.101853). df for r0 ⇡ r is evaluated from Eq.

(221) for � = 0.14263 ⇡ �p in (a) and � = 0.17472 ⇡ �c in (b). In (a), thick solid curved line is

characterized by a set [S = 9.01⇥ 1015, ⇠� = 8.79⇥ 10�8] because �/�K = 0.694663 corresponds

to T ⇡ Tp near a percolation threshold on the spinodal line. Other curved lines are characterized

by [S = 18348, ⇠� = 0.0369] linked to �/�K = 0.697 ( T > Tp); [S = 181, ⇠� = 0.343] linked to

�/�K = 0.72 ( T > Tp); [S = 22, ⇠� = 0.911] linked to �/�K = 0.78 ( T > Tp). In (b), thick solid

curved line is characterized by [S = 7.33⇥ 1012, ⇠� = 0.974] because �/�K = 0.79529 corresponds

to a relation near a percolation threshold satisfying T > Tc above the spinodal line. Other curved

lines are characterized by [S = 17866, ⇠� = 0.996] linked to �/�K = 0.798 ( T > Tc); [S = 509,

⇠� = 1.11] linked to �/�K = 0.812 ( T > Tc); and [S = 15.1, ⇠� = 1.82] linked to �/�K = 0.92 (

T > Tc).
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(a)  κσ=0.1,    φ=6.85342E-06
σ/βK=0.018087 [ξσ=2.47E-09; S=1.22E+13]
σ/βK=0.01809   [ξσ=0.00195; S=14874]
σ/βK=0.0181     [ξσ=0.00631;  S=1053]
σ/βK=0.0182     [ξσ=0.0185;  S=113]
σ/βK=0.02         [ξσ=0.0761;  S=7.2]
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(b)  κσ=0.1,  σ/βK=0.018087
φ=6.85342E-06  [ξσ=2.47E-09; S=1.22E+13]
φ=6.852E-06       [ξσ=0.00333;  S=6798]
φ=6.84E-06         [ξσ=0.0103;  S=571]
φ=6.7E-06         [ξσ=0.0354;  S=46.1]
φ=6.0E-06         [ξσ=0.0882;  S=8.1]

FIG. 24. Dependence of df on r for a small � (� = 0.1) (f⌫ = 0.101853). df for r0 ⇡ r

is evaluated from Eq. (221). In (a) evaluated for � = 6.85342 ⇥ 10�6
⇡ �

0
p, thick solid curved

line is characterized by a set [S = 1.22 ⇥ 1013, ⇠� = 2.47 ⇥ 10�9] because �/�K = 0.018087

corresponds to T ⇡ T
0
p near a percolation threshold on the spinodal line. Other curved lines

are characterized by [S = 14874, ⇠� = 0.00195] linked to �/�K = 0.01809 (T > T
0
p); [S = 1053,

⇠� = 0.00631] linked to �/�K = 0.0181 ( T > T
0
p); [S = 113, ⇠� = 0.0185] linked to �/�K = 0.0182

( T > T
0
p); and [S = 7.2, ⇠� = 0.0761] linked to �/�K = 0.02 ( T > T

0
p). In (b) evaluated for

�/�K = 0.018087 ( T ⇡ T
0
p), thick solid curved line for � = 6.85342⇥10�6 is the same as that shown

for �/�K = 0.018087 in (a). Other curved lines are characterized by [S = 6798, ⇠� = 0.00333]

linked to � = 6.852 ⇥ 10�6 (� < �
0
p); [S = 571, ⇠� = 0.0103] linked to � = 6.84 ⇥ 10�6 (� < �

0
p);

[S = 46.1, ⇠� = 0.0354] linked to � = 6.7 ⇥ 10�6 (� < �
0
p); and [S = 8.1, ⇠� = 0.0882] linked to

� = 6.0⇥ 10�6 (� < �
0
p).
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κσ=1.8,  σ/βK=1.0314
φ=0.161423   [ξσ =4.20E-08; S=146]

φ=0.146   [ξσ =0.0734; S=22.4]

φ=0.126   [ξσ =0.315; S=8.0]

FIG. 25. Dependence of df on r for � = 1.8 (f⌫ = 0.101853). df for r0 ⇡ r is evaluated from

Eq. (221) for �/�K ⇡ 1.0314 linked to T ⇡ Tc. Thick solid curved line is characterized by a set

[S = 146, ⇠� = 4.20⇥ 10�8] because � = 0.161423 is linked to � ⇡ �c ⇡ �p � 0.008. Other curved

lines are characterized by [S = 22.4, ⇠� = 0.0734] linked to � = 0.146 ( � < �c); and [S = 8.0,

⇠� = 0.315] linked to � = 0.126 ( � < �c).

The behavior of P(r) is characterized by the form of Eq. (219) at r satisfying |r0�r|/r0 ⌧

1 with 1 ⌧ r0/�. If physical clusters formed in a fluid system by a mutually attractive force

between two particles, which is characterized by a Yukawa potential uY(r), have a fractal

structure, then the fractal dimension df of the physical clusters is evaluated by the use of

Eq. (221). When the fluid system includes su�ciently large physical clusters, the physical

clusters maintain a fractal structure with the fractal dimension approximated as df ⇡ 1.4.
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This fact is confirmed in Figs. 22, 23, and 24. Moreover, Fig. 24 indicates that the physical

clusters can maintain a fractal structure characterized by df ⇡ 1.4 if the percolation of

physical clusters occurs even under a condition 0 < � ⌧ 1. This example denotes that

even astronomical physical clusters formed by the contribution of a long-ranged attractive

force such as gravitation should exhibit a fractal structure characterized by df ⇡ 1.4.

( b ) Structure resulting from mixing inhomogeneously

The representation of df introduced by Eq. (219) is not complete for physical cluster

elements formed in a fluid system unless the aggregation of physical cluster elements with

each other enhances the long-range feature of P(r) su�ciently. The pair connectedness

P(r) described by Eq. (68) via the Percus–Yevick (PY) approximation8 implies that each

small element of physical clusters formed in a Yukawa fluid can have a structure that is

characterized as a fractal structure. If a condition of the fluid system deviates slightly from

the percolation threshold, physical clusters cannot be developed towards large sizes as shown

in Figs. 22, 23, 24, and 25. Even under the condition, each physical cluster element should

maintain a fractal feature.

Growth of a physical cluster in a fluid can proceed via either particle–cluster aggregation

or cluster–cluster aggregation.40 Then, each physical cluster of particles grows in shapes that

are similar to branches and does not form a block of aggregated particles. Physical cluster

growth yielded by the cluster–cluster aggregation allows each physical cluster to maintain a

structure characterized by branches. The cluster–cluster aggregation allows large physical

clusters to have the structure with a fractal dimension near 1.5.40

The representation of P(r) given by Eq. (68) implies that large physical clusters formed

via cluster–cluster aggregation in a Yukawa fluid have a structure that is characterized as

a fractal structure. This indicates that the aggregation of physical cluster elements with

each other allows large physical clusters with the fractal structure to be formed. Physical

clusters with a fractal structure can be formed under the condition of a fluid system that is

located far from the percolation threshold even if the behavior of df given by Eq. (221) is

not constant for variations in r.

In a fluid, physical clusters are formed by particle pairs contributing to the magnitude

of P(r). The physical clusters can grow infinitely without disappearing, and the formation

of large physical clusters causes the behavior of df given by Eq. (221) to become constant.
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This indicates that the particle pairs do not homogeneously mix in each microscopic volume

with other particle pairs contributing to the magnitude of D(r). Such inhomogeneity in a

fluid system is a state shown from the behavior of df given by Eq. (221). At the liquid–vapor

critical point, the inhomogeneity causes the deviation from behavior of g(r) expressed as

g(r)� 1 ⇠ r
�1.

111



C. Phase behaviors influenced by physical clusters

1. Specific behaviors of correlation functions

( a ) Reduction of density fluctuations owing to exclusion e↵ect caused by hard core of

each particle

The degree of the density fluctuations is linked to the compressibility because Eq. (18)

can be modified with the use of Eq. (41) as follows:

lim
V!1

V

⇢

*✓
N

V

◆2
+

�
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N

V

◆�2�
=


�

✓
@P
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◆

V,T

��1

. (223)

Based on Eq. (223), it is easy to confirm the degree of the density fluctuations for a

hard-sphere fluid system. The equation of state of a hard-sphere fluid can be given as a

simple formula that more precise than that obtained from the PY approximation,9,10 and it

is expressed as10,11

�P

⇢
=

1 + �+ �
2
� �

3

(1� �)3
. (224)

The di↵erentiation of Eq. (224) with respect to ⇢ allows the compressibility equation to be

expressed as

�

✓
@P

@⇢

◆

V,T

��1

= (1� �)4(1 + 6�+ 6�2
� 14�3 + 7�4)�1

. (225)

According to the magnitude of ��1(@⇢/@P )V,T evaluated from Eq. (225), the density fluc-

tuations in a hard-sphere fluid system are simply reduced as the density of the hard spheres

increases. This is confirmed by Fig. 26. For a hard-sphere fluid system, eP(0) = 0 is satisfied.

Hence, a comparison of Eq. (225) with Eq. (163) allows the following relation to be obtained:

eH(0) = (1� �)4(1 + 6�+ 6�2
� 14�3 + 7�4)�1

� 1. (226)

A comparison of Eq. (226) with Eq. (225) requires the behavior of eH(0) to be equivalent

to the behavior of ��1(@⇢/@P )V,T shown in Fig. 26. The exclusion e↵ect caused by the

hard core of each particle allows the degree of the density fluctuations to be reduced as

the density of particles is increased. If Eq. (165) is considered, then for a hard-sphere fluid

system,
⇥
�
�
@P/@⇢

�
V,T

⇤�1

= eH(0) + 1 = 1/[1 � eC⇤(0)], eP(0) = 0, and eC+(0) = 0 must be

satisfied. Therefore, the exclusion e↵ect owing to the hard core of each particle requires
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FIG. 26. Degree of density fluctuations of hard-sphere fluid. This fluid is a typical system where

contribution of formation of physical clusters does not exist, but the exclusion e↵ect owing to

the hard-core potential of each particle exists. The degree of density fluctuations is denoted by
⇥
�
�
@P/@⇢

�
V,T

⇤�1
, which is evaluated based on Eq. (225).

relations 0 � eC⇤(0) < �1 and 0  eH(0)  1 to be satisfied. This indicates that eC⇤(0)

and eH(0) have negative values if the exclusion e↵ect owing to the hard core of each particle

becomes dominant for a large �, i.e., for a large ⇢, in a fluid system where a mutually

attractive force acts between particles of each pair. Then, eC⇤(0) can become even a large
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FIG. 27. Degree of density fluctuations of Yukawa fluid � = 1.8 (f⌫ = 0.101853). Degree of

density fluctuations denotes
⇥
�
�
@P/@⇢

�
V,T

⇤�1
evaluated based on Eq. (166) that is formed from

⇢bc(0) given by Eq. (139). Then,
⇥
�
�
@P/@⇢

�
V,T

⇤�1
= eP(0) + eH(0) + 1 and eP(0) 6= 0 are satisfied.

[�/�K]c is given as [�/�K]c ⇡ 1.0314.

negative value.

( b ) Resistance to phase separation of particles belonging to physical clusters

114



0.001

0.1

10

1000

100000

10000000

0 0.05 0.1 0.15 0.2

PI
SI

TI
VE

 C
O

NT
RI

BU
TI

O
NS

waveP(0)  at [σ/βK]c waveH(0)  at [σ/βK]c

0.1

10

1000

100000

10000000

0 0.05 0.1 0.15 0.2

NE
GA

TI
VE

 C
O

NT
RI

BU
TI

O
N

Φ

Φ

FIG. 28. Behaviors of eP(0) and eH(0) for condition satisfying � = 1.8 and �/�K = [�/�K]c

(f⌫ = 0.101853). Large negative values of eH(0) near percolation threshold is compensated for large

positive values of eP(0) near percolation threshold in summation eP(0)+ eH(0)+1 that is equivalent

to
⇥
�
�
@P/@⇢

�
V,T

⇤�1
. In figure, “wave P (0)” means eP(0), and “wave H(0)” means eH(0). [�/�K]c

is given as [�/�K]c ⇡ 1.0314.

The presence of a mutually attractive force between hard-core particles of each pair

makes the behavior of
⇥
�
�
@P/@⇢

�
V,T

⇤�1

for a fluid system become di↵erent from that seen

in Fig. 26. The presence of the mutually attractive force enables the density fluctuations to

become extremely large as ⇢ increases toward the critical point. Then, even the existence of
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FIG. 29. Behaviors of eC+(0) and eC⇤(0), ec(0), eP(0), eH(0), S, [�@P/@⇢]�1, P(�), and D(�) for

� = 1.8 and �/�K = 1.16 (f⌫ = 0.101853). ⇢C†0 ⌘ eC+(0), ⇢C
⇤0 ⌘ eC⇤(0), ⇢c0 ⌘ ec(0),

waveP (0) ⌘ eP(0), and waveH(0) ⌘ eH(0).
⇥
�
�
@P/@⇢

�⇤�1
= eP(0) + eH(0) + 1. P (�) ⌘ P(�) and

D(�) ⌘ D(�). Each dot “•” corresponds to a point given at percolation threshold.

small physical clusters can influence the phase behavior at the critical point, as confirmed by

Figs. 18 (a) and 19 (a). When the temperature of a fluid decreases or the density of particles

increases, either the aggregation of particles that results in phase separation can be domi-
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FIG. 30. Behaviors of eC+(0) and eC⇤(0), ec(0), eP(0), eH(0), S, [�@P/@⇢]�1, P(�), and D(�) for

� = 1.8 and �/�K = 1.06 (f⌫ = 0.101853). Detail is same as that in Fig. 29.

nated or the generation of the percolation can be dominated, depending on the distance at

which the attractive forces between the particles remain e↵ective. Phase separation in a fluid

before reaching the percolation threshold or percolation before inducing phase separation

occurs depending on the distance at which the attractive forces between the particles remain

e↵ective. Similarly, a critical behavior at the critical point before reaching the percolation
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FIG. 31. Behaviors of eC+(0) and eC⇤(0), ec(0), eP(0), eH(0), S, [�@P/@⇢]�1, P(�), and D(�) for

� = 1.8 and �/�K = 1.036 > [�/�K]c (f⌫ = 0.101853). Critical point is specified by �/�K =

[�/�K]c and � = �c with [�/�K]c ⇡ 1.0314 and �c ⇡ 0.161423. Detail is same as that in Fig. 29.

threshold or percolation before reaching the critical point are observed depending on the

e↵ective length to which the influence of each attractive force reaches. Thus, the two cases

are possible, depending on whether the e↵ective length is short or long. In the case that

the e↵ective length is long, critical phenomena in a fluid occurs before a condition of a fluid
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reaches the percolation threshold of physical clusters; the spinodal line is located above the

percolation threshold in the phase diagram. In the case that the e↵ective length is short,

the percolation occurs before a condition of a fluid reaches the critical point; the percolation

threshold is located above the spinodal line in the phase diagram. These facts should imply

that the appearance of the liquid phase of a fluid depends on the e↵ective length to which

the influence of each attractive force reaches.

According to Fig. 6, a fluid system that is specified for � = 1.8 and ⇢ satisfying

0.0099792 < � < 0.16432 corresponds to a system under the condition that the spinodal

line is located above the percolation threshold. If �/�K = [�/�K]c is maintained with

[�/�K]c ⇡ 1.03136 given at the critical point of the fluid system, then an increase in the

density of the fluid system can allow the occurrence of a critical behavior at the critical

point to appear before reaching the percolation threshold. The critical behavior appears

at the set specified by � = �c (�c ⇡ 0.161423) and �/�K = [�/�K]c, and the percolation

threshold is located at the set specified by � = �p (�p ⇡ 0.170034) and �/�K = [�/�K]c

([�/�K]c ⇡ 1.0314). This fact enables phase behavior near the critical point to be linked to

variations in structures of particle distribution that are characterized by eP(0) and eH(0).

In the fluid system, the growth of physical clusters is linked to an increase in the number

of particle pairs contributing to the magnitude of eP(0). As an increase in the value of �

corresponds to a decrease in the mean distance between particles, this increase allows the

strength of the mutually attractive force between the particles of each pair to be increased

on average. An increase in the mutually attractive force makes the particles stay more stably

near each other. As a result, the magnitude of D(�) (= H(�) + 1) and the magnitude of

P(�) both should be increased. According to Figs. 29, 30, and 31, the ratio P(�)/D(�)

is also increased by an increase in the value of �. The contraction of the mean distance

between particles owing to the increase in the value of � allows the e↵ect of the mutually

attractive force to be strengthened. However, the magnitude of P(�) remains small even at

the percolation threshold. If it is possible to induce a phenomenon in which only particles

belonging to the physical clusters are aggregated in the vicinity of each other, then the mag-

nitude of P(�) should become large as the condition of the fluid approaches the percolation

threshold. Further, this phenomenon should allow the particles belonging to the physical

clusters to be separated from the phase of the fluid. These are negated by the behavior of

P(�) remaining small even at the percolation threshold.
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The fluid system has a capability to resist the phase separation of particles belonging

to the physical clusters. The magnitude of eH(0) includes the contribution of particle pairs

characterized by the fact that two particles of each pair interact in an unbound state where

the contribution of the relative kinetic energy of the pair particles exceeds the contribution

of the attractive force between them. The particles that form the physical clusters coexist

with particles specified as particle pairs contributing to the magnitude of eH(0). The lat-

ter particles have a tendency to be confined among branches of physical clusters.52 Thus,

the particles contributing to the magnitude of eH(0) prevent the occurrence of the phase

separation of particles belonging to the physical clusters. Resistance to the occurrence of

the phase separation of particles that form the physical clusters is assisted by the particles

contributing to the magnitude of eH(0).
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2. Maximization of density fluctuations near critical point

When a condition of a fluid is not in the vicinity of the critical point, evaluations based

on Eqs. (203) and (217) do not allow relation g0(r) < g(r) to be found for a large r even if

S is su�ciently large. The case of (a) found in Fig. 21 denotes that a fluid system includes

physical clusters of which the mean size is given as S = 6.43⇥1014. In this case, g0(r) > g(r)

is found for a large r. The case of (a) found in Fig. 20 denotes that a fluid system includes

physical clusters for which the mean size is given as S = 7.33⇥1012. In this case, g0(r) > g(r)

is found for a large r. For a fluid maintained in the vicinity of both the critical point and the

percolation threshold, finding g0(r) < g(r) for a large r is necessary based on the contribution

of P(r) to g(r). This is confirmed from (a) in Fig. 17. Nevertheless, relation g0(r) < g(r)

for a large r can be found even if the mean size of physical clusters S is not su�ciently large

when a condition of a fluid is maintained in the vicinity of the critical point. The case of (a)

found in Fig. 18 denotes that the fluid includes physical clusters of which the mean size is

given as S = 146. The case of (a) found in Fig. 19 denotes that the fluid includes physical

clusters of which the mean size is given as S = 22.2. These indicate that the existence of

physical clusters contributes to the maximization of the density fluctuations at the critical

point even if S is not large.

The percolation of physical clusters occurs at the percolation threshold corresponding to

the condition given as 1 � eC+(0) = 0. Despite this fact, the magnitude of ��1(@⇢/@P )V,T

given as Eq. (164) is prevented from diverging to infinity at the condition 1 � eC+(0) = 0.

This is demonstrated by the form given by Eq. (165). Thus, the extremely large density

fluctuations that are specified through Eq. (166) at the condition 1� ec(0) = 0 occur owing

to the second term on the right-hand side of Eq. (164). This term is equivalent to eH(0), i.e.,

eH(0) =
eC⇤(0) + eC⇤(0) eP(0)

1� eC+(0)� eC⇤(0)
, (227)

where neither eP(0) nor eC+(0) are zero if a fluid system includes physical clusters. Examples

showing eP(0) 6= 0 and eC+(0) 6= 0 for � > 0 are confirmed from Figs. 29, 30, and 31. Equation

(227) implies that the extremely large density fluctuations occur because particles belonging

to physical clusters restrict the behavior of particles contributing to the magnitude of eH(0).

If particles specified as particle pairs contributing to the magnitude of eH(0) are confined

among branches of physical clusters formed in a fluid system, the movements of the particles
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are restricted. According to the behaviors of H(r) and P(r) found from Figs. 17, 18, 19,

20, and 21, the minimum of H(r) occurs near the value of r at which P(r) is maximized.

This demonstrates that particles contributing to the magnitude of H(r) have a tendency to

be excluded from particles contributing to the magnitude of P(r). The magnitude of H(r)

includes the contribution of particle pairs characterized by the fact that two particles of

each pair interact in an unbound state where the contribution of the relative kinetic energy

of the pair particles exceeds the contribution of the attractive force between them. Unless

particles contributing to the magnitude of H(r) prevent physical clusters from contracting,

particles belonging to the physical clusters must undergo phase separation from the fluid

system. Particles contributing to the magnitude of H(r) are confined among branches of

physical clusters. Hence, these particles prevent phase separation. Then, the movements of

the particles are restricted by particles belonging to physical clusters.

A contribution of the exclusion e↵ect owing to each hard core allows the degree of the

density fluctuations [�(@P/@⇢)V,T ]�1 to be decreased as the density ⇢ of particles is increased.

Moreover, an increase in the density ⇢, i.e., the volume fraction � decreases the mean distance

between particles; hence, the increase strengthens the e↵ects of attractive forces between

particles. Then, physical clusters can be stabilized even if the physical clusters are small.

Ultimately, at least the number of physical clusters is increased by the increase in the value

of �.

Simultaneously, the increase in the value of � should raise the probability that particle

pairs contributing to the magnitude of eH(0) are exchanged for particle pairs contributing

to the magnitude of eP(0). An increase in the number of physical clusters means that the

particle pairs contributing to the magnitude of eH(0) are confined in larger number among the

branches of physical clusters. Thus, the e↵ect of increasing the probability should enhance

the instability of physical clusters.

An increase in the volume fraction � can lead to at least three di↵erent types of e↵ects,

i.e., a) the enhancement of the exclusion e↵ect reducing [�(@P/@⇢)V,T ]�1, b) the stabilization

of physical clusters owing to the contraction of the mean interparticle distance, and c)

the enhancement of the instability of physical clusters owing to confinement of particles

contributing to the magnitude of eH(0). Then, the e↵ect of b) competes with the e↵ect of c).

This competitive phenomenon should have the ability to enhance the density fluctuations.

The behavior of eH(0) is changed when � exceeds �c that is the value of � at the critical
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point. The e↵ect of a) becomes dominant. Moreover, the e↵ect of b) becomes more dominant

than the e↵ect of c). Thus, the maximized density fluctuations are reduced as � is increased

beyond the value of �c. According to Eq. (227), 0 < eC⇤(0) < 1, 0 < eC+(0) < 1, 0 < eP(0),

and 0 < 1� eC+(0)� eC⇤(0) ⌧ 1 must be satisfied when 0 < (�� �c)/� ⌧ 1 is satisfied. As

� increases, the magnitude of eC⇤(0) decreases toward zero. Then, the magnitude of eP(0) is

increased. The magnitude of eH(0) decreases and reaches zero at eC⇤(0) = 0. As � is increased

more, eC⇤(0) becomes negative although its absolute value is not large. Then, eP(0) reaches

a large value toward the percolation threshold. Thus, eH(0) has a large negative value near

the percolation threshold, as confirmed by Fig. 28.
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3. Magnitude of D(r) vanishing at triple point

According to the compressibility equation expressed by Eq.(165), the pressure P of a

single-component fluid satisfies relation [�(@P/@⇢)V,T ]�1 = 1/(1 � eC+(0) + eC⇤(0)). The

behavior of the pressure P at the triple point enables specific features of correlation functions

to be revealed.

According to Eqs. (44) and (169), the mean physical cluster size S is given as S = 1+ eP(0),

in which relation 0 < eP(0) is always satisfied. If a relation given by Eq. (88) is considered,

then it is expressed as S = 1/(1 � eC+(0)). As the relation 1  S is always satisfied, the

value of eC+(0) must satisfy

0  eC+(0)  1. (228)

If (@⇢/@P )V,T ⇡ 0 is generally satisfied at the triple point, then Eq. (165) requires eC⇤(0) to

satisfy the following relation at the triple point:

0 < 1/(� eC⇤(0)) ⌧ 1, (229)

because the magnitude of eC+(0) is limited by Eq. (228). This denotes that the exclusion

e↵ect owing to the hard core of each particle becomes su�ciently dominant at the triple

point.

According to Eqs. (163) and (223), the density fluctuations are expressed as

h(N/V )2i � hN/V i
2 = (hN/V i/V )( eP(0) + eH(0) + 1),

where the mean number of particles included in a fluid system of volume V is expressed as

hNi. Hence, requiring relation (@⇢/@P )V,T ⇡ 0 at the triple point corresponds to requiring

relation h(N/V )2i�hN/V i
2
⇡ 0. At the triple point, the density fluctuations are prevented.

This suggests the occurrence of two phenomena. One of the two phenomena indicates that

particular particle pairs contributing to the magnitude of D(r) are confined among branches

of physical clusters. The other represents that almost all physical clusters are in the state

of the percolation at least near the triple point. In the state of the percolation of physical

clusters, relation 1 ⌧ eP(0) is satisfied according to Eq. (44). The state of percolation

at the triple point requires relation 1 ⌧ eP(0) and 1 ⌧ � eH(0). Relation 1 ⌧ � eH(0) is

equivalent to (1/V )
R
V
D(r)dr ⇡ 0 owing to D(r) = H(r) + 1. Decreasing the magnitude of

D(r) toward zero means that the magnitude of � eH(0) is made diverge. Particle pairs that
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contribute to the magnitude of D(r) includes specific particle pairs characterized by the fact

that two particles of each particle pair interact in an unbound state where the contribution

of the relative kinetic energy of the pair particles exceeds the contribution of the attractive

force acting between them. The particle pairs should contribute to maintaining the density

fluctuations near the triple point. This fact suggests the assumption that particle pairs that

contribute to the magnitude of D(r) are confined among branches of physical clusters formed

by particle pairs that contribute to the magnitude of P(r). The more densely branches of

physical clusters are developed, the more frequently particle pairs that contribute to the

magnitude of D(r) and which are confined among the branches of physical clusters can be

exchanged for particle pairs that contribute to the magnitude of P(r). The development

of branches of physical clusters allows for a decrease in the magnitude of D(r) and allows

1 ⌧ � eH(0), which leads to (1/V )
R
V
D(r)dr ⇡ 0. This is consistent with a consequence

obtained from the discussion in Sec.II B 3 as it shows that (1/V )
R
V
D(r)dr ⇡ 0 is satisfied

near a liquid-solid transition point. The fluid system is allowed to be transformed from the

liquid state into the solid state when (1/V )
R
V
D(r)dr ⇡ 0 is satisfied.

If the percolation of physical clusters does not occur even at the triple point, then the

magnitude of eP(0) is not large according to Eq. (44). Then, the magnitude of � eH(0) is

also not large as relation (@⇢/@P )V,T ⇡ 0 requires eH(0) ⇡ �1� eP(0). This means that the

magnitude of D(r) does not reach zero when an increase in the value of ⇢ allows the value

to reach a specific value given at the triple point. It is somewhat unreasonable to allow a

fluid system to be transformed from the liquid state into the solid state under the condition

that the magnitude of D(r) does not become su�ciently small.

Therefore, the condition 1 ⌧ eP(0) denoting the state of the percolation should be satisfied

near the triple point. The occurrence of 1 ⌧ eP(0) means that branches of physical clusters

that develop densely over the entirety of V can confine particle pairs contributing to the

magnitude of D(r) among them. The occurrence of 1 ⌧ eP(0) near the triple point is e↵ective

for explaining why the density fluctuations decease toward vanishing as ⇢ increases toward

a specific value being given at the triple point.
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D. E↵ects on thermodynamic properties of classical fluids

1. E↵ects of physical cluster formation on features of various fluids

( a ) Pressure equation

In the gas state, the fluid should be characterized as an ensemble of particle pairs consist-

ing of only particles having large relative momenta. Then, each particle pair is characterized

as pair particles interacting in an unbound state in which a contribution of their relative

kinetic energy exceeds a contribution of the mutually attractive force characterized by a

specific pair potential u(r). By contrast, each particle pair forming an ensemble of parti-

cles having small relative momenta is characterized as pair particles interacting in a bound

state in which a contribution of the mutually attractive force characterized by a specific pair

potential exceeds a contribution of their relative kinetic energy. A physical cluster is an

ensemble of particles that are linked to each other via bonds defined by such bound states.

Particles that participate in the physical cluster formation contribute to the magnitude of

the pair connectedness P(r). These particles have small relative momenta; hence, they

cannot actively contribute to the pressure P .

According to the pressure equation, the pressure P for a single-component fluid involves

an e↵ect of the physical cluster formation owing to g(r) = P(r) + D(r) and is given as

follows:

�P = ⇢� (⇢2/6)�

Z

V

r[du(r)/dr][P(r) +D(r)]dr.

In the pressure equation, particles that contribute to the magnitude of a correlation function

D(r) can have large relative momenta. This can principally contribute to the pressure P .

A fluid must consist of particles contributing to P(r) and particles contributing to D(r).

According to a macroscopic aspect of the fluid, the expectation is that a group of particles

contributing to P(r) homogeneously mix with a group of particles contributing to D(r).

According to microscopic aspect, e↵ects of the physical cluster formation on the fluid do

not allow the two groups to homogeneously mix with each other. Moreover, particles having

large relative momenta can be confined among branches of physical clusters. Thus, e↵ects

of the physical cluster formation on the pressure should be observed. Features of the fluid

at a temperature at least below the liquid-vapor critical point should be generated via the

cooperation between a group of particles having large relative momenta and another group
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of particles having small relative momenta.

Based on Eq. (163), the compressibility estimated from the two di↵erential equations Eqs.

(154) and (155) is equal to that estimated from the two integral equations Eqs. (49) and (52),

unless a fluid includes extremely large physical clusters developed under conditions beyond

the percolation threshold. The two correlation functions P(r) and D(r) that are estimated as

exact solutions from the two di↵erential equations Eqs. (154) and (155) should be adequate

approximations that allow the pressure P to be expressed as the sum of contributions of the

physical cluster formation and the other contributions.42

( b ) Confinement of particles caused by branches of each physical cluster

Attractive forces between particles constituting each physical cluster must make the

branches of each physical cluster contract, and particles having small relative momenta

should not be allowed to microscopically homogeneously mix with particles having large

relative momenta. Despite this fact, the solid state cannot be found even in a specific fluid

being maintained near the freezing point. Hence, particles having large relative momenta

must be confined among branches of physical clusters and must prevent physical clusters

from contracting. The formation of a structure that prevents the phase separation between

a group of particles having highly kinetic abilities and another group of particles having

small relative momenta is consistent with the law of the increase of entropy. Moreover, the

fact that branches of physical clusters confine particles having large relative momenta should

allow the liquid-vapor interface to become macroscopically clear and smooth in a fluid sys-

tem being maintained below the critical point. A capability to allow a fluid to maintain the

liquid state55 should be a result of the physical cluster formation, which allows particles of

large relative momenta to be confined, and the physical cluster formation should make the

liquid state di↵er from the gas state.

( c ) Features of fluids generated by physical cluster formation

A microscopic fluid structure induced by the physical cluster formation should allow some

features of a fluid in a liquid phase to be interpreted. No matter how high the density of

particles becomes, a fluid in the gas state where the e↵ect of the physical cluster formation

is not expected can microscopically homogeneously mix with another fluid in the gas state
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where the e↵ect of the physical cluster formation is also not expected. However, a fluid

in the liquid state cannot homogeneously mix in each microscopic element of volume with

another fluid in the liquid state. This phenomenon is caused by an e↵ect of the physical

cluster formation.

Physical clusters can contribute to forming a microscopic distribution pattern of particu-

lar particles (atoms or molecules) that are dissolved as solute particles in a fluid in the liquid

state. Solute particles that cannot actively participate in the physical cluster formation have

a tendency to be distributed among branches of physical clusters. Solute particles that can

actively participate in the physical cluster formation have a tendency to be distributed as

a portion of the particle group that consists of particles forming physical clusters. Thus,

physical clusters can make a microscopic distribution pattern of solute particles inhomoge-

neous in a fluid mixture, such as a liquid of metallic alloy or another solute-solvent mixture.

A microscopic fluid structure, resulting in a microscopic distribution pattern of solute par-

ticles, might aid in interpreting even the anomaly of the specific heat that can be obtained

from a fluid mixture near the consolute point54 as the stability of physical clusters depends

on the temperature.

The formation of a microscopic inhomogeneous distribution pattern of solute particles

characterizes a macroscopic phenomenon called the osmotic pressure. The behavior of the

osmotic pressure when dissolving solute particles that cannot actively participate in the

physical cluster formation di↵ers from that when dissolving solute particles that can ac-

tively participate in the physical cluster formation. The di↵erence between microscopic

inhomogeneous distribution patterns can allow the temperature dependence of the osmotic

pressure for a fluid mixture to di↵er from that for another di↵erent fluid mixture.

Under the condition that the stability of physical clusters is low, both the formation

of physical clusters and the decomposition of physical clusters can occur as very sensitive

responses to slight variations in temperature. Such highly sensitive responses should allow

the thermal conductivity of a fluid to behave anomalously26. A microscopic fluid structure

induced by the physical cluster formation should influence various phenomena found from a

fluid.

At the temperatures of a fluid that is beyond the liquid-vapor critical point although

is near this point, the physical cluster formation can cause inhomogeneity as the density

fluctuations12. As physical clusters that are formed in a fluid in the gas state restricts the
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motion of particles, the fluid should gain a specific structure14. After the density fluctuations

reaches the maximum at the critical point, they are reduced as the density of particles

increases12.

The degree of the density fluctuations can be confirmed from the compressibility as known

from Eq. (223). In a hard-sphere fluid system, the density fluctuations are only simply

reduced as the density of hard spheres increases according to the equation of state55. No

existence of attractive forces between particles causes the phase behavior to be simple. The

presence of attractive forces between particles can cause complexity of the phase behavior,

which depends on features of the attractive forces56. Various characteristic phenomena19–24

can be influenced by the physical cluster formation depending on features of attractive forces

acting between particles.

The dependence of the heat capacity of a fluid on temperature behaves characteristically

near the critical points.57,58 According to relation g(r) = P(r)+D(r), the internal energy U

for a single component fluid involves an e↵ect of the physical cluster formation and is given

as follows:

U =
3⇢V

2�
+

1

2
⇢
2
V

Z

V

u(r)
⇥
P(r) +D(r)

⇤
dr.

The dependence of the heat capacities of liquids on temperature54,59 should involve the in-

fluence of the stability of physical clusters. Although extremely large physical clusters occur

at the percolation threshold, the dependence of the heat capacity of a fluid on temperature

can be a↵ected by physical clusters that do not reach a percolation state near the critical

point.42,57,58
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2. Pressure a↵ected by physical cluster growth

Under the condition that Eqs. (156) and (157) are satisfied, two correlation functions P(r)

and H(r) that are given as exact solutions satisfying the two di↵erential equations expressed

by Eqs. (154) and (155) should allow the pressure P maintained by a single-component fluid

to be adequately estimated. This is supported by the fact that the compressibility is given by

Eq. (163). Moreover, it is supported by the fact that a requirement for making the use of the

pressure equation �P = ⇢� (⇢2/6)�
R
V
r[du(r)/dr][P(r)+D(r)]dr become e↵ective requires

approximations for P(r) and H(r) to be adequate only in a microscopic range in which

|du(r)/dr| retains an e↵ective magnitude. Hence, the pressure P that is estimated from the

two correlation functions given as the exact solutions should be an adequate approximation

for the pressure that should be estimated from two correlation functions derived from the

two integral equations corresponding to Eqs. (49) and (52).

( a ) Correlation functions for describing fluid

The correlation functions P(r) andH(r) are given as exact solutions of the two di↵erential

equations. According to Eq. (182), P(r) is expressed by

P(r) = P0(r) + Pin(r) + Pex(r),

where P0(r) expresses the direct contribution of the particle located at the origin, i.e.,

r = 0, and it decreases steeply as ⇠
+
r is increased because it depends on an exponential

factor e�⇠
+
(r��) (�  r). If a condition of the fluid is not in the vicinity of the percolation

threshold where 0  ⇠
+
� ⌧ 1 is satisfied, then the contribution of P0(r) can become

su�ciently small. According to Eq. (200), H(r) is expressed by

H(r) + 1 = H0(r) +H
(+)

in
(r) +H

(+)

ex
(r) +H

(⇤)
in
(r) +H

(⇤)
ex
(r) + 1,

where H0(r) expresses the direct contribution of the particle located at the origin, i.e.,

r = 0, and it decreases steeply as ⇠r is increased because it depends on an exponential

factor e�⇠(r��) (�  r). If a condition of the fluid is not in the vicinity of the critical point

where 0  ⇠
+
� ⌧ 1 is satisfied, then the contribution of H0(r) can become su�ciently small.

According to the dependence of H(r) on � in cases of P(r) 6= 0, an increase in the value

of � can allow the absolute value of the negative magnitude of H(r) to be increased. This is

confirmed by a comparison between (a) and (c) in Fig. 20 and another comparison between
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(a) and (c) in Fig. 21. The behaviors mentioned here can be caused by the exclusion e↵ect

owing to the hard-core potential of each particle.

( b ) Estimate of pressure

To consider the exclusion e↵ect owing to the hard-core potential of each particle, the

pressure equation should be rewritten as

P =
⇢

�


1� 4�

Z
�

0

�
d�ur(r)

dr
g(r)

✓
r

�

◆3 1

�
dr � 4�

Z 1

�

�
d�ua(r)

dr
g(r)

✓
r

�

◆3 1

�
dr

�
(230)

Here, the pair potential contributing to the interaction of a particle with another particle

is expressed as u(r) = ur(r) for 0  r  � and u(r) = ua(r) for �  r < 1. ur(r) is a

repulsive pair potential owing to the hard core, and ua(r) is an attractive pair potential.

Then, lim�!0 u(� � �) 6= lim�!0 u(� + �) appears. For 0  r  �, u(r) = 1 is satisfied. For

� < r < 1, �1 < u(r) < 0 is satisfied, and �u(r) has a finite positive value.

i ) Direct e↵ect of the hard-core potential on the pressure

To assess the second factor on the right-hand side of Eq. (230), the PY approximation

can be expressed as

c(r) = ⌘(r)f(r), (231)

where f(r) is the Mayer f -function given as f(r) = e
��ur(r) � 1, and ⌘(r) is defined by

⌘(r) ⌘ g(r)e�ur(r), (232)

According to Eq. (231), the hard-core potential ur(r) = 1 functioning for 0 < r  � requires

c(� � �) = ⌘(� � �)f(� � �) = �⌘(� � �), (0 < � ⌧ 1). (233)

The MSA requires Eq. (231) to satisfy

c(� + �) = ⌘(� + �)f(� + �) = ��ur(� + �), (0 < � ⌧ 1). (234)

Then,

c(� + �) 6= c(� � �), (0 < � ⌧ 1). (235)
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However, Eqs. (233) and (233) require c(� + �) and c(� � �) to remain finite values for

0 < � ⌧ 1. Therefore, ⌘(� + �) and ⌘(� � �) are finite values for 0 < � ⌧ 1, and it is

acceptable to assume that

lim
�!0

⌘(� + �) = lim
�!0

⌘(� � �). (236)

Thus, the use of Eq. (232) allows the second factor on the right-hand side of Eq. (230) to

be rewritten as

4�

Z
�

0

�
d�ur(r)

dr
g(r)

✓
r

�

◆3 1

�
dr =4� lim

�!0

Z
�+�

0

�
d�ur(r)

dr
⌘(r)e��ur(r)

✓
r

�

◆3 1

�
dr

=�4� lim
�!0

Z
�+�

0

�⌘(r)

✓
d

dr
e
��ur(r)

◆✓
r

�

◆3 1

�
dr. (237)

Then, the hard-core potential requires ur(r) = 1 for 0  r  � and ur(r) = 0 for �  r to

be satisfied, and the direct e↵ect owing to the hard-core potential corresponds to the impact

occurring at r = �. Hence, a factor e
��ur(r) for expressing the direct e↵ect is equivalent

to the Heaviside step function ✓(r � �). Thus, the derivative in Eq. (237) is expressed as

d

dr
e
��ur(r) = d

dr
✓(r� �) = �(r� �). Ultimately, Eq. (236) requires Eq. (237) to be estimated

as

4�

Z
�

0

�
d�ur(r)

dr
g(r)

✓
r

�

◆3 1

�
dr =�4� lim

�!0

Z
�+�

0

�⌘(r)�(r � �)

✓
r

�

◆3 1

�
dr

=�4� lim
�!0

⌘(� + �)

✓
� + �

�

◆3

=�4�g(�). (238)

ii ) Pressure given by Eq. (230)

The use of P(r) and H(r) given as the exact solutions allows the pressure P of the fluid

to be expressed by the following formula:

P =
⇢

�


1 + 4�g(�)�

�

⇢
Pc(P)�

�

⇢
Pc(D)

�
, (239)

where D(r) = H(r) + 1.

On the right-hand side of Eq. (239), a factor (�/⇢)Pc(P) is given by

�

⇢
Pc(P) ⌘

�

⇢
Pc(P0) + 4�

Z 1

�

�
d�ua(r)

dr
[Pin(r) + Pex(r)]

✓
r

�

◆3 1

�
dr, (240)
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where

�

⇢
Pc(P0) ⌘ 4�

Z 1

�

�
d�ua(r)

dr
P0(r)

✓
r

�

◆3 1

�
dr. (241)

If a condition of the fluid is far from the percolation threshold, then the expectation is that

the contribution of (�/⇢)Pc(P0) is su�ciently smaller than the other factor.

Moreover, Eq. (239) includes a factor (�/⇢)Pc(D) that is given by

�

⇢
Pc(D) =

�

⇢
Pc(H0) +

�

⇢
Pc(H

(+)) +
�

⇢
Pc(H

(⇤) + 1), (242)

where

�

⇢
Pc(H0) ⌘ 4�

Z 1

�

�
d�ua(r)

dr
H0(r)

✓
r

�

◆3 1

�
dr, (243)

�
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(+)) ⌘ 4�

Z 1

�

�
d�ua(r)

dr
[H(+)

in
(r) +H

(+)

ex
(r)]

✓
r

�

◆3 1

�
dr, (244)

and

�

⇢
Pc(H

(⇤) + 1) ⌘ 4�

Z 1

�

�
d�ua(r)

dr
[H(⇤)

in
(r) +H

(⇤)
ex
(r) + 1]

✓
r

�

◆3 1

�
dr. (245)

If a condition of the fluid is far from the critical point, then the expectation is that the

contribution of (�/⇢)Pc(H0) is su�ciently smaller than that of the other factors.

( c ) E↵ects of physical cluster formation on pressure

In Eq. (239), the contribution of (�/⇢)Pc(P) to the magnitude of P corresponds to an

e↵ect from the particles participating in the physical cluster formation. A requirement

�d�u(r)/dr < 0 for considering the mutually attractive force and another requirement

P(r) � 0 for considering a feature of the pair connectedness allow a relation (�/⇢)Pc(P) > 0

to always be satisfied according to Eqs. (240) and (241). Thus, recognition obtained from Eq.

(239) denotes that the contribution of (�/⇢)Pc(P) plays a role in decreasing the magnitude

of P . This demonstrates that the physical cluster formation plays a role in reducing the

pressure of the fluid. This e↵ect can allow each fluid in the liquid state to maintain its

volume without being confined, and it can allow each fluid in the liquid state to maintain its

surface without a container. Simultaneously, this can allow surface tension to be generated.

A factor (�/⇢)Pc(H(+)), which is given by Eq. (244), represents an e↵ect induced in the

case that the physical clusters confine particles contributing to the magnitude of H(r). If
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the contributions of the physical cluster formation to the pressure are ignored, then the

factor (�/⇢)Pc(H(+)) should be zero with (�/⇢)Pc(P). Then, Eqs. (239) and (242) require

the pressure to be expressed by

P =
⇢

�


1 + 4�g(�)�

�

⇢
Pc(H0)�

�

⇢
Pc(H

(⇤) + 1)

�
. (246)

The magnitude of P that is estimated from Eq. (246) should be larger than that estimated

form Eq. (239) in which the contributions of the two factors (�/⇢)Pc(P) and (�/⇢)Pc(H(+))

are not ignored. If the contributions of the two factors for P are not ignored, then the

physical cluster formation plays a role in reducing the pressure. Then, particles having large

relative momenta are confined among branches of physical clusters.42

3. Internal energy a↵ected by physical cluster growth

( a ) Estimate of internal energy U for single-component fluid

The two correlation functions P(r) and H(r) are given as the exact solutions satisfying

Eqs. (154) and (155) under the condition that Eqs. (156) and (157) are satisfied. The

internal energy can be su�ciently accurately estimated from the use of a specific equation

if approximations for P(r) and H(r) are adequate within a domain where a pair potential

causing the interaction of a particle with another remains e↵ective. Then, this domain

retains a microscopic extent. On the contrary, the domain within which P(r) and H(r) are

estimated reaches a macroscopic extent. On the surface of the domain, the requirements

expressed by Eqs. (156) and (157) are satisfied.

The features of the pair potential require the equation for an estimate of the internal

energy U to be expressed by

U =
3⇢V

2�


1 + 8�

Z
�
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◆2 1

�
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✓
r

�

◆2 1

�
dr

�
. (247)

The continuity given by Eq. (236) with Eq. (232) can be expressed as follows:

0 < lim
�!0

g(� � �)e�ur(���) = lim
�!0

g(� + �)e�ua(�+�)
< 1. (248)

Thus, Eq. (248) requires

0  lim
�!0

g(� � �)�ur(� � �) ⌧ lim
�!0

g(� � �)e�ur(���)
. (249)

134



Then, Eq. (249) means that the following relation is satisfied:

lim
�!0

g(� � �)�ur(� � �) = 0. (250)

Therefore, the contribution of the second factor on the right-hand side of Eq. (247) disap-

pears, and the internal energy is estimated as

U =
3⇢V

2�


1 + 8�

Z 1

�

�ua(r)g(r)

✓
r

�

◆2 1

�
dr

�
, (251)

where g(r) = P(r) +D(r) with D(r) = H(r) + 1.

If the approximations for P(r) and H(r) are adequate in the e↵ective range in which

|u(r)| 6= 0 is satisfied, then the approximations allow U to be estimated in a su�ciently

accurate fashion. Hence, the internal energy U that is estimated from the exact solutions

should be an adequate approximation for the internal energy that should be estimated from

two correlation functions derived from the two integral equations corresponding to Eqs. (49)

and (52).

The use of the exact solutions given by P(r) = P0(r) + Pin(r) + Pex(r) and D(r) =

H0(r) + H
(+)

in
(r) + H

(+)

ex (r) + H
(⇤)
in
(r) + H

(⇤)
ex (r) + 1 allows the internal energy U for the

single-component fluid to be given as

U =
3⇢V

2�


1 +

2�

3⇢V
Uc(P) +

2�

3⇢V
Uc(D)

�
. (252)

On the right-hand side of Eq. (252), a factor (2�/3⇢V )Uc(P) is given by

2�

3⇢V
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2�

3⇢V
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Z 1

�
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⇥
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where

2�

3⇢V
Uc(P0) ⌘ 8�

Z 1

�

�ua(r)P0(r)

✓
r

�

◆2 1

�
dr. (254)

If a condition of the fluid is far from the percolation threshold, then the expectation is that

the contribution of (2�/3⇢V )Uc(P0) is su�ciently smaller than the other factor. In Eq.

(252), relation (2�/3⇢V )Uc(P) < 0 is satisfied because u(r) < 0 and P(r) > 0 are satisfied.

The factor (2�/3⇢V )Uc(P) plays a role in reducing the magnitude of the internal energy.

The physical cluster formation contributes to reducing the value of U . The internal energy

as a thermodynamic property of a classical fluid system is a↵ected by the formation of a

specific structure generated in the fluid.
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Moreover, Eq. (252) includes a factor (2�/3⇢V )Uc(D), which is given by

2�

3⇢V
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2�

3⇢V
Uc(H0) +

2�

3⇢V
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3⇢V
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(⇤) + 1), (255)

where
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and
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If a condition of the fluid is far from the critical point, then the expectation is that the

contribution of (2�/3⇢V )Uc(H0) is su�ciently smaller than the other factors.

The exact solutions given by P(r) = P0(r) + Pin(r) + Pex(r) and H(r) + 1 = H0(r) +

H
(+)

in
(r)+H

(+)

ex (r)+H
(⇤)
in
(r)+H

(⇤)
ex (r)+1 satisfy Eqs. (156) and (157) as requirements before

reaching the percolation threshold. Hence, the internal energy that is obtained from the

substitution of the exact solutions P(r) and H(r) into Eq. (252) corresponds to that which

should be estimated in a condition before reaching the percolation threshold. The internal

energy obtained from the use of the exact solutions cannot be allowed to express the internal

energy that should be estimated under the condition that a fluid includes extremely large

physical clusters developed beyond the percolation threshold. Despite this fact, the internal

energy estimated from Eq. (252) should preserve an adequate approximation even near the

percolation threshold.

By contrast, if the contributions of the physical cluster formation to the internal energy

are ignored, then (2�/3⇢V )Uc(P) = 0 and (2�/3⇢V )Uc(H(+)) = 0 should be satisfied. This

becomes adequately real at least at high temperatures. Then, Eqs. (252) and (255) require

the internal energy to be given as

U =
3⇢V

2�


1 +

2�

3⇢V
Uc(H0) +

2�

3⇢V
Uc(H

(⇤) + 1)

�
. (259)

If a fluid is the ideal gas, then the internal energy satisfies (2/3)�U/⇢V = 1, which is inde-

pendent of temperature. When ignoring the formation of physical clusters is acceptable for

a fluid, the exclusion e↵ect owing to the hard-core potential of each particle becomes a dom-

inant factor that makes (2/3)�U/⇢V depend on temperature. This is confirmed according
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to the form of the above equation for a fluid that does not have a specific structure owing

to the physical cluster formation.

( b ) Relations of internal energy U with structures of fluid

A fluid in the gas state should be characterized as a specific ensemble of particle pairs

consisting of particles having large relative momenta. Then, each particle pair is charac-

terized as pair particles interacting in an unbound state in which a contribution of their

relative kinetic energy exceeds a contribution of the mutually attractive force characterized

by a specific pair potential u(r). Even in the fluid in the liquid state, such particle pairs

having large relative momenta are included. Indeed, the contribution of their large relative

momenta to the internal energy U should be dominant in comparison with that of small rel-

ative momenta carried by particle pairs forming physical clusters. Each particle pair formed

by pair particles having small relative momenta is characterized as pair particles interacting

in a bound state in which a contribution of the mutually attractive force characterized by the

pair potential exceeds a contribution of their relative kinetic energy. Each physical cluster

mentioned here is an ensemble of particles that are linked with each other via bonds defined

by such bound states.

Particles that participate in physical cluster formation contribute to the magnitude of

P(r). These particles have small relative momenta; hence, they cannot actively contribute to

U . Particles that contribute to the magnitude of D(r) have large relative momenta. These

particles can principally contribute to U . Thus, particles are classified into two groups.

According to the microscopic aspect, e↵ects of the physical cluster formation on the fluid

do not allow particles belonging to the two groups homogeneously to mix with each other.

Particles having large relative momenta can be confined among branches of physical clusters.

Thus, an e↵ect of the physical cluster formation must influence the internal energy. The

internal energy of the fluid at a temperature at least below the liquid-vapor critical point

should involve e↵ects caused by the cooperation between a group of particles having large

relative momenta and another group of particles having small relative momenta.

The internal energy U given by Eq. (252) includes a contribution Uc(P) of physical clus-

ters and another contribution Uc(D). Movements of particles participating in the physical

cluster formation have a tendency to be inhibited by mutually attractive forces making

the particles interact with each other. The e↵ect of the inhibition of kinetic abilities of
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the particles on the internal energy is given as (2/3)�Uc(P)/⇢V in Eq. (252). If a fluid

includes physical clusters, then the magnitude of (2/3)�Uc(D)/⇢V involves a confinement

e↵ect that is generated by confining particles of large relative momenta among branches of

physical clusters. If a fluid include no physical cluster, then the temperature dependence of

(2/3)�Uc(D)/⇢V is characterized by a contribution caused by the exclusion e↵ect owing to

the hard-core potential of each particle.

Even if a contribution of the formation of extremely large physical clusters may not be

required, the dependence of the specific heat on temperature T near a special temperature

T0, at which a property of a fluid varies anomalously, can be characterized by (1� T/T0)�↵

(0 < ↵). This can be expected at least for the measurements of heat capacity for argon

and oxygen.57 It is impossible to find the above dependence for a hard-sphere fluid system

without the formation of physical clusters.

For a fluid in the liquid state, the dependence of (2/3)�U/⇢V on the temperature of

the fluid is not simple.59 A confinement e↵ect that results from confining particles of large

relative momenta among branches of physical clusters can a↵ect the temperature dependence

of (2/3)�U/⇢V . Indeed, the temperature dependence in a region of high temperature should

be di↵erent from that in a region of low temperature because the mean size of physical

clusters depends sharply on the temperature. When variations in the temperature of the

fluid occurs, even variations in the magnitude of (2/3)�Uc(D)/⇢V can become more sensitive

in the region of lower temperature where physical clusters should be more stabilized.

The mean size of physical clusters is steeply decreased if the temperature of the fluid

is slightly increased from that at the percolation threshold. Hence, when variations in

temperature occur, variations in the magnitude of (2/3)�Uc(P)/⇢V should be ignored in the

temperature region that is higher than that at the percolation threshold. By contrast, when

variations in temperature occur, the magnitude of (2/3)�Uc(D)/⇢V can sensitively vary

even when the temperature is much higher than that at the percolation threshold because

particles that contribute to the magnitude of D(r) increase in number as the temperature

is increased. When the temperature approaches that at the percolation threshold, physical

clusters grow steeply in the vicinity of the percolation threshold. A steep growth of physical

clusters in the vicinity of the percolation threshold should allow for the contribution of

(2/3)�Uc(P)/⇢V to the internal energy to be considerably enhanced. As exemplified by the

internal energy, thermodynamic properties of a classical fluid system can be a↵ected via
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the formation of a specific structure generated for the physical cluster formation and the

confinement of particles having large relative momenta.
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III. PHYSICAL CLUSTER FORMATION IN MULTICOMPONENT

FLUIDS

Phase behavior of a multicomponent fluid mixture system is complicated by the con-

tribution of physical cluster growth that involves several constituents of the system. It is

useful to establish an equation system corresponding to that composed of Eqs. (49) and

(52) to analyze the e↵ects of the physical cluster formation on the properties of the multi-

component fluid mixture system. Each physical cluster is formed as an ensemble of pair

particles that interact with each other in a bound state.

Two particles can interact with each other in a bound state or in an unbound state in

the multicomponent fluid mixture system. If the two particles are particle 1 of species i

and particle 2 of species j, the three-dimensional coordinates for the particles of species

i and j can be denoted by r(i)
1

and r(j)
2
, respectively. Then, a bound state, i.e., E ij

(1,2)
+

�uij(|r
(i)

1
� r(j)

2
|)  0 corresponds to a specific state where the contribution �uij(|r

(i)

1
� r(j)

2
|)

of a mutually attractive force between the particles 1 and 2 exceeds the contribution E
ij

(1,2)
of

relative kinetic energy between the two particles because their relative momentum is small.

An unbound state, i.e., E ij

(1,2)
+ �uij(|r

(i)

1
� r(j)

2
|) > 0 corresponds to a specific state where

the contribution E
ij

(1,2)
of the relative kinetic energy between the particles 1 and 2 exceeds

the contribution �uij(|r
(i)

1
� r(j)

2
|) of the mutually attractive force between the two particles

because their relative momentum is large.

Unless phase separation occurs in a multicomponent fluid mixture system, the macro-

scopic picture of the system allows particles that have large and small relative momenta to be

homogeneously mixed. However, these particles cannot be microscopically homogeneously

mixed. Branches of physical clusters can confine particles that have large relative momenta.

Thus, the physical cluster growth wherein particles that have small relative momenta par-

ticipate can a↵ect various properties of the multicomponent fluid mixture system.
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A. Two integral equations for describing an L-component fluid mixture

system

The probability that one particle each of species i and j are located in a volume element

dr(i)
1

at r(i)
1

and in volume element dr(j)
2

at r(j)
2

respectively is expressed using the pair

correlation function gij. Then, a three-dimensional coordinate r(i)
h

denotes the location of

an h particle of species i (i = 1, 2, · · · , L). If the two root points are labeled 1 and 2, one

of two particles occupying the two root point is located at r(i)
1

and the other at r(i
0
)

2
. The

three-dimensional coordinates of field points labeled 3, 4, · · · are expressed as r(i
00
)

3
, r(i

000
)

4
,

· · · , respectively.

The above probability is given as ⇢i⇢jgij(r)dr
(i)

1
dr(j)

2
, wherein ⇢i and ⇢j represent the

particle densities of species i and j for a uniform distribution in a fluid mixture system of L

constituents, respectively. Parameter r is the distance between the two root points and it is

given as r = |r| and r = r(i)
1

� r(j)
2
.

The relationship between a particle of species i in dr(i)
1

at r(i)
1

and a particle of species j in

dr(j)
2

at r(j)
2

is characterized by two possibilities: Both of them belong to the same physical

cluster or each of them belongs to di↵erent physical clusters.

The probability that both of the two particles belong to the same physical cluster is ex-

pressed using the pair connectedness Pij. Then, the probability is given by ⇢i⇢jPij(r)dr
(i)

1
dr(j)

2
.

The pair connectedness Pij(r) allows estimating the mean size of the physical clusters.3

The probability that the particle of i in dr(i)
1

at r(i)
1

and the particle of j in dr(j)
2

at r(j)
2

belong to a physical cluster and another physical cluster respectively is expressed using a

correlation function Dij. Then, the probability is given by ⇢i⇢jDij(r)dr
(i)

1
dr(j)

2
. Ultimately,

the probability that the particles of i and j are located in dr(i)
1

at r(i)
1

and in dr(j)
2

at r(j)
2

respectively is represented as the sum ⇢i⇢jPij(r)dr
(i)

1
dr(j)

2
+ ⇢i⇢jDij(r)dr

(i)

1
dr(j)

2
. Thus, the

pair connectedness Pij(r) for the fluid mixture system of L constituents is related to gij(r)

as

gij(r) = Pij(r) +Dij(r). (260)

This relationship holds the same meaning as that maintained by Eq. (38) for a single-

component fluid system.
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1. Probability that two particles interact with each other in the bound state

( a ) Probability pij(r)

A mutually attractive force can make a particle interact with another. Hence, the re-

lationship between pair particles specified by an f -function have two possibilities. If the

pair particles are an hi particles of species i and an hj particles of j, one possibility suggests

that the contribution of a mutually attractive force between the hi and hj particles exceeds

the contribution E
ij

(hi,hj)
of the relative kinetic energy between them. The other possibility

suggests that E ij

(hi,hj)
exceeds the contribution of the mutually attractive forces. When one

particle each of species i and j are located at r(i)
hi

and r(j)
hj

respectively, the distance between

them is rij = |r(i)
hi

� r(j)
hj
|. Then, the contribution of a mutually attractive force between the

two particles is given by �uij(rij). This allows Eq. (30) to express the probability pij(rij)

that the pair particles satisfy the condition E
ij

(hi,hj)
+ uij(rij)  0. The probability pij(rij) is

given by

pij(rij) = 2⇡�1/2

h
�(3/2)� �(3/2,��uij(rij))

i
. (261)

Indeed, this probability should behave as pij(rij) = 0 if uij(rij) is a repulsive potential, i.e.,

�uij(rij) > 0. If the particles are located outside the e↵ective ranges within which mutually

attractive forces make the particles interact with each other, pij(rij) = 0 should also be

satisfied. Further, the use of the Heaviside step function ✓(⌧) = 1 (⌧ > 0), 0 (⌧ < 0) allows

Eq. (261) to be rewritten as

pij(rij) = 2⇡�1/2

h
�(3/2)� �(3/2, wij(rij))

i
, (262)

where wij is defined as

wij(rij) ⌘ ��uij(rij)✓[��uij(rij)]. (263)

( b ) f
+-function and f

⇤-function

An ensemble of particle pairs specified by f -functions forming a product in each term of

the density expansion of gij can be symbolized as a diagram with a structure formed from

particle pairs linked by f -bonds defined as the f -functions. Every diagram found in the

density expansion of gij has the same pair of root points; the density expansion corresponds

to the sum of all diagrams with structures that form f -bonds’ paths joining a root point
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to the other root point. Then, the paths of f -bonds found in the density expansion allow

e↵ects of the behavior of a particle at a root point to be propagated to the other particle at

the other root point.

Pair particles specified by an f -function fij(rij) interact with each other in a bound

state or in an unbound state. The use of pij(rij) enables fij(rij) to be divided into two

contributions. One contribution is expressed as f+

ij
(rij), which is linked to the case that the

pair particles interact with each other in a bound state E
ij

(hi,hj)
+ uij(rij)  0. The other is

expressed as f
⇤
ij
(rij), which is linked to the case that the pair particles interact with each

other in an unbound state E
ij

(hi,hj)
+ uij(rij) > 0. Thus, fij(rij) are expressed as the sum of

the f
+- and f

⇤-functions, i.e.,

fij(rij) = f
+

ij
(rij) + f

⇤
ij
(rij). (264)

Then, the f
+-function and f

⇤-function are given by
8
><

>:

f
+

ij
(rij) ⌘ pij(rij)e��uij(rij),

f
⇤
ij
(rij) ⌘ [1� pij(rij)]e��uij(rij) � 1.

(265)

2. Physical clusters

The use of Eq. (264) allows each f -bond in a diagram found in the density expansion

of gij(rij) to be expressed as the sum of the f
+-bond defined by the contribution from the

interaction in a bound state and the f ⇤-bond defined by the contribution from the interaction

in an unbound state. Thus, the use of Eq. (264) makes it be possible to find a diagram

wherein the root point is connected to the other root point through at least one path of all

f
+-bonds given as a product of f+- functions. Particles that participate in forming such a

diagram constitute a portion of a physical cluster. Indeed, the two particles corresponding

to the two root points are two particles constituting the physical cluster. This fact allows

Pij(rij) to be given as the sum of contributions obtained from every diagram with at least

one path of all f+ bonds between the root points.

The second simplest diagram found in the density expansion of gij(rij)�1 comprises three

particles linked by two f -bonds. The three particles occupy a root point r(i)
1
, the other root

point r(j)
2
, and one field point r(k)

3
, respectively. The field point corresponds to a coordinate
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of a particle of species k. If the three particles participate in the formation of a physical

cluster, the three particles are retained via the f -bonds in the bound states characterized

as the conditions E
ik

(1,3)
+ uik(|r

(i)

1
� r(k)

3
|)  0 and E

kj

(3,2)
+ ukj(|r

(k)

3
� r(j)

2
|)  0. The three

particles in these bound states correspond to those participating in a diagram in which a

root point is connected to the other root point through at least one path of all f+-bonds

given as a product of f+-functions. The two particles corresponding to the two root points

are two of particles that constitute the same physical cluster.

The above fact allows Pij(rij) to be given as the sum of contributions obtained from every

diagram that has at least one path of all f+ bonds between the root points. Particle pairs

contributing to the magnitude of Pij(rij) should not have large relative momenta. Particle

pairs that have large relative momenta should principally contribute to the magnitude of

Dij(rij), and those that have small relative momenta should principally contribute to the

magnitude of Pij(rij). In a fluid mixture system, particle pairs contributing to the magnitude

of Pij(rij) cannot be homogeneously mixed with particle pairs contributing to the magnitude

of Dij(rij). This fact allows the fluid mixture system to exhibit various properties.

3. Integral equations for analyzing physical cluster formation

According to the similarity to a single-component fluid system, each diagram found in the

density expansion of gij(rij)� 1 is a diagram that comprises paths of f -bonds between the

two root points. The diagrams found in the density expansion of gij(rij)�1 are divided into

two groups: One comprises the nodal diagrams with nodal points, and the other comprises

the non-nodal diagrams that have no nodal point. A nodal point is a specific field point in a

diagram. Missing the field point in the diagram implies that the diagram is separated into

a group including a root point and the other group including the other root point. Thus,

if the contribution of the nodal diagrams is expressed as Nij(rij) and that of the non-nodal

diagrams as cij(rij), then the density expansion of gij(rij)�1 requires gij(rij)�1 to be given

as

gij(r)� 1 = cij(r) +Nij(r), (266)

where r = rij ⌘ |r(i)
1

� r(j)
2
|. This equation is equivalent to the Ornstein–Zernike equation,9

and cij(r) corresponds to the direct correlation function. Nij(r) is given as the convolution
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integral, i.e.,

Nij(r) =
LX

k=1

⇢k

Z

V

cik(rik)
h
gkj(rkj)� 1

i
dr(k)

3
,

where rik ⌘ |r(i)
1

� r(k)
3
| and rkj ⌘ |r(k)

3
� r(j)

2
|. In the above equation, L is the number of

constituents .

Similarly, the diagrams contributing to Pij(r) comprise the nodal diagrams and the non-

nodal diagrams. Hence, Pij(r) is given as the sum of the contribution of all the nodal

diagrams and that of all the non-nodal diagrams.3 This implies that Pij(r) is expressed as

Pij(r) = N
+

ij
(r) + C

+

ij
(r). (267)

Here, C+

ij
(r) denotes the contribution of all the non-nodal diagrams, and each non-nodal

diagram has at least one path of all f+-bonds between the two root points. N
+

ij
(r) is the

contribution of all the nodal diagrams, and each nodal diagram has at least one path of all

f
+-bonds between the two root points.

The direct correlation function cij(r) represents the contribution of all non-nodal diagrams

that comprise paths of f -bonds between the two root points. A correlation function C
⇤
ij
(r)

that is similar to cij(r) with respect to the behavior at a large r is obtained from the

subtraction of C+

ij
(r) from cij(r). It satisfies the following formula:

cij(r) = C
+

ij
(r) + C

⇤
ij
(r). (268)

Equation (268) requires the correlation function C
⇤
ij
(r) to represents the contribution of all

non-nodal diagrams which do not include any paths formed by all f+-bonds between the

two root points r(i)
1

and r(j)
2
.

Then, subtracting Eq. (267) from Eq. (266) allows useful relations to be found because

of Eq. (260). The relations are summarized as
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

gij = Pij +Dij

gij � 1 = cij +Nij

Pij = C
+

ij
+N

+

ij

Dij � 1 = C
⇤
ij
+N

⇤
ij

C
⇤
ij
⌘ cij � C

+

ij
(all non-nodal diagrams)

N
⇤
ij
⌘ Nij �N

+

ij
(all nodal diagrams).

(269)
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The di↵erence Nij�N
+

ij
represents the contribution of all nodal diagrams that do not include

any paths formed by all f+- bonds between the two root points r(i)
1

and r(j)
2
.

Moreover, N+

ij
(r) is provided as the convolution integral of the product of C+

ik
(r) and

Pkj(r), i.e.,

N
+

ij
(r) =

LX

k=1

⇢k

Z

V

C
+

ik
(rik)Pkj(rkj)dr

(k)

3
.

Therefore, Eq. (267) allows the pair connectedness Pij(r) to be provided as a solution of the

integral equation expressed as

Pij(r) = C
+

ij
(r) +

LX

k=1

⇢k

Z

V

C
+

ik
(rik)Pkj(rkj)dr

(k)

3
, (270)

where r = rij ⌘ |r(i)
1

� r(j)
2
|.

The integral equation given by Eq. (270), which is used in the limit V ! 1, has the

same mathematical structure as the Ornstein–Zernike equation. The correlation function

C
+

ij
, which is an unknown function in Eq. (270), is composed of only non-nodal diagrams

of f+-bonds. The direct correlation function cij is composed of only non-nodal diagrams of

f -bonds. This fact guarantees that the use of a mathematical procedure similar to that for

solving the Ornstein–Zernike equation enables Eq. (270) to be solved.

An integral equation for the correlation function Dij(r) can be extracted from the

Ornstein–Zernike equation. Owing to Eq. (260), the Ornstein–Zernike equation is expressed

as

Pij(rij) +Dij(rij)� 1 = cij(rij) +
LX

k=1

⇢k

Z

V

cik(rik)Pkj(rkj)dr
(k)

3

+
LX

k=1

⇢k

Z

V

cik(rik)[Dkj(rkj)� 1]dr(k)
3
. (271)

To obtain an integral equation for Dij(r), the contribution of Pij(r) expressed by Eq. (270)

must be subtracted from Eq. (271). Then, the direct correlation function cij expressed by

Eq. (268) must be substituted for cij in Eq. (271). Thus, the obtained integral equation

is equivalent to both an integral equation derived by Stell28 and the other one derived by
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Chiew et al.6 The integral equation is expressed as

Hij(r) =C
⇤
ij
(r) +

LX

k=1

⇢k

Z

V

C
⇤
ik
(rik)Pkj(rkj)dr

(k)

3

+
LX

k=1

⇢k

Z

V

C
+

ik
(rik)Hkj(rkj)dr

(k)

3
+

LX

k=1

⇢k

Z

V

C
⇤
ik
(rik)Hkj(rkj)dr

(k)

3
, (272)

where r = rij ⌘ |r(i)
1

� r(j)
2
| and

Hij(r) ⌘ Dij(r)� 1. (273)

Then, Eq. (272) requires N⇤
ij
in Eq. (269) to satisfy

N
⇤
ij
(rij) =

LX

k=1

⇢k

Z

V

C
⇤
ik
(rik)P

+

kj
(rkj)dr

(k)

3
+

LX

k=1

⇢k

Z

V

cik(rik)
⇣
Dkj(rkj)� 1

⌘
dr(k)

3
. (274)

Although Eqs. (270) and Eq. (272) are not equivalent to the Ornstein–Zernike equation,

an integral equation system composed of Eqs. (270) and (272) becomes equivalent to the

Ornstein–Zernike equation because of Eq. (268). Equation (270) contributes to estimating

the formation of physical clusters. Equation (272) contributes to estimating e↵ects of the

physical cluster formation. In fact, the second and third terms on the right-hand side of Eq.

(272) represent the reason that the formation of the physical clusters a↵ect the correlation

functionHij. The existence of these terms play roles in explaining various phenomena caused

by physical cluster formation and physical cluster growth.

4. Appendix: Rewrite of integration equation Eq. (272)

With respect to mathematical structure, Eq. (272) is di↵erent from the Ornstein–Zernike

equation. Despite this fact, it is possible to rewrite Eq. (272) as an integral equation that

has the same mathematical structure as the Ornstein–Zernike equation. Then, the relation

given by Eq. (270) must be considered. Thus, a formal rewrite of Eq. (272) results in

Hij(rij) = C
⇤
ij
(rij) +

LX

k=1

⇢k

Z

V

C
⇤
ik
(rik)Hkj(rkj)drk, (275)

where

Hij(rij) ⌘ Hij(rij)�
LX

k=1

⇢k

Z

V

C
+

ik
(rik)Hkj(rkj)drk (276)
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and

C
⇤
ij
(rij) ⌘ C

⇤
ij
(rij) +

LX

k=1

⇢k

Z

V

C
⇤
ik
(rik)Pkj(rkj)drk. (277)

The correlation function C
⇤
ij
includes both non-nodal diagrams and nodal diagrams be-

cause of the second term on the right-hand side of Eq. (277). The correlation functions C+

ij
,

C
⇤
ij
, and cij are composed of only non-nodal diagrams. Only in the case that the contribu-

tion of the second term on the right-hand side of Eq. (277) cannot be considered important,

it is possible to solve Eq. (275) using a mathematical procedure similar to that for the

Ornstein–Zernike equation.

Further, a correlation function Hij(rij) is a↵ected via C
+

ik
(rik) by the physical cluster for-

mation. In addition, the correlation function C
⇤
ij
(rij) is a↵ected via Pkj(rkj) by the physical

cluster formation. Particles contributing to the magnitude ofHij(rij) are not prevented from

behaving independently of particles contributing to the magnitude of Pij(rij). The parti-

cles contributing to the magnitude of Hij(rij) are not homogeneously mixed with particles

contributing to the magnitude of Pij(rij). Therefore, a formal equation style of Eq. (275)

accompanying Eqs. (276) and (277) demonstrates that particles with large relative momenta

cannot be homogeneously mixed with particles that have small relative momenta.
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B. Features of correlation functions for multicomponent fluid mixture system

According to Kirkwood and Bu↵,33 the pair correlation function gij(r) for the multicom-

ponent fluid mixture system2 has the normalization given as

1

V

Z

V

gij(r)dr =
hNii � �ij

V ⇢i
+

1

V 2

1

⇢i⇢j


hNiNji � hNiihNji

�
, (278)

where hNii represents the mean number of particles of species i within volume V . The

dependence of gij(r) on V is negligible for macroscopic V . The dependence of hNii/V on V

and that of (hNiNji � hNiihNji)/V on V are also negligible. Thus, Eq. (278) results in

lim
V!1

1

V

Z

V

gij(r)dr = 1.

This relation and Eq. (260) require Pij(r) and Dij(r) to satisfy

lim
V!1


1

V

Z

V

Pij(r)dr+
1

V

Z

V

Dij(r)dr

�
= 1. (279)

Moreover, the pair correlation function behaves as gij(|r
(i)

1
� r(j)

2
|) ⇡ 1 when two particles

located at r(i)
1

and r(j)
2

in the fluid system are widely separated. In the limit V ! 1 and

r ! 1, it behaves as gij(r) = 1.2 Thus, Eq. (260) allows the physical meanings of Pij(r)

and Dij(r) to result in
8
><

>:

limr!1 Pij(r) = 0

limr!1 Dij(r) = 1.

1. Mean size S of physical clusters for multicomponent fluid mixture system

The mean size S of physical clusters can be estimated from the use of Pij(r). The

equilibrium number ns of physical clusters comprising s particles can be related to the pair

connectedness Pij. According to the formula given by Coniglio et al.,3 the relationship

between ns and Pij is given as

X

2s

s(s� 1)ns =
LX

i=1

LX

j=1

⇢i⇢j

Z

V

Z

V

Pij(|r
(i)

1
� r(j)

2
|)dr(i)

1
dr(j)

2
. (280)
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If probability p
(i) that a particle of i species exists in a cluster is independent of s, then

the factor
P

s
sns included in Eq. (280) can be related to the density ⇢i of particles of i

species in the volume V as

⇢i =
p
(i)

V

X

s

sns.

If
PL

i=1
p
(i) = 1 is considered, the sum

P
s
sns is estimated as

X

s

sns = V

LX

i=1

⇢i.

The mean physical cluster size S is given as S = (
P

s
s
2
ns)/(

P
s
sns). Hence,

S =

✓
V

LX

i=1

⇢i

◆�1X

s

s
2
ns.

This formula allows Eq. (280) to be rewritten as

S = 1 +
⇣ LX

k=1

⇢k

⌘�1
LX

i=1

LX

j=1

⇢i⇢j

Z

V

Pij(r)dr. (281)

2. Percolation of physical clusters

( a ) System without percolation of physical clusters

If the percolation of physical clusters does not occur in macroscopic V found in the fluid

mixture system of L constituents, S estimated for the fluid mixture system using Eq. (281)

should be su�ciently independent of V . The limit V ! 1 does not influence S. Thus, the

limit V ! 1 allows Eq. (281) to result in
8
><

>:

limV!1[(S � 1)/V ]
PL

k=1
⇢k = 0

limV!1(1/V )
R
V
Pij(r)dr = 0.

(282)

Eq. (282) allows Eq. (279) to result in the normalization condition given in the limit V ! 1

as

lim
V!1

(1/V )

Z

V

Dij(r)dr = 1. (283)
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( b ) System involving percolation of physical clusters

If the percolation of physical clusters occurs in macroscopic V found in the fluid mixture

system, S estimated for the fluid system using Eq. (281) should be dependent on V . Then,

the magnitude of [(S � 1)/V ]
PL

k=1
⇢k can have a finite value di↵erent from zero, i.e.,

8
><

>:

limV!1[(S � 1)/V ]
PL

k=1
⇢k 6= 0

limV!1(1/V )
R
V
Pij(r)dr 6= 0.

(284)

If a state of the fluid is in the immediate vicinity of the liquid–solid transition point where

0 < ⇢
sd

i
�⇢

lq

i
⌧ 1 (⇢sd

i
denotes ⇢i in a solid state, and ⇢

lq

i
denotes ⇢i in a liquid state that can

be transformed into the solid state) is satisfied, the dependence of S on V may be estimated

as S/V ⇡
PL

i=1
⇢
sd

i
, which corresponds to the case that the growth of the physical clusters

reaches the limit. If this estimate for S/V is considered, in the limit V ! 1, Eq. (281)

should have the meaning expressed as

(1/V )
LX

i=1

LX

j=1

⇢i⇢j

Z

V

Pij(r)dr ⇡
LX

i=1

⇢
sd

i

LX

k=1

⇢k. (285)

Thus, Eq. (285) allows Eq. (279) to result in

(1/V )

Z

V

Dij(r)dr ⇡ 0. (286)

A state specified by (1/V )
R
V
Dij(r)dr = 0 means there are no particle pairs that com-

prise particles interacting with each other in unbound states. In a fluid mixture system

characterized by (1/V )
R
V
Dij(r)dr ⇡ 0, it is extremely impossible to observe an unbound

state where the contribution of the relative kinetic energy between pair particles exceeds the

contribution of a mutually attractive force between them, for each particle pair. This implies

that the fluid mixture system loses a feature found as liquid. Thus, the growth of physical

clusters can contribute the phase transition from the liquid state of the fluid mixture system

to the solid state.
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C. E↵ects depending on physical cluster formation in multicomponent fluids

1. Classification of constituents

In a multicomponent fluid mixture system, an ensemble of particles linked with each

other as each pair of particles interacting in a bound state cannot be microscopically ho-

mogeneously mixed with an ensemble of particles that is formed by each pair of particles

interacting in an unbound state. However, it is possible to prevent the former and latter en-

sembles from separating from the mixed condition that seems macroscopically homogeneous

in the multicomponent fluid mixture system. Branches of each physical cluster correspond-

ing to the former ensemble have a tendency to microscopically confine particles that belong

to a latter ensemble to prevent the phase separation. Then, the constituents of the multi-

component fluid mixture can be classified into A and B. Particles belonging to constituents

A have a tendency to participate in the former ensemble, and those belonging to the other

constituents B have a tendency to participate in the latter ensemble. Particles belonging to

constituents A have a strong tendency to participate in the formation of physical clusters,

and those belonging to constituents B have a strong tendency to be confined among branches

of the physical clusters. As a result, the relationships between the physical cluster formation

and features of constituents can a↵ect phase behaviors of the multicomponent fluid mixture.

2. Various phenomena and interpretations

For multicomponent fluid mixtures in their liquid phase, the contributions of the physical

cluster formation to their features are not ignored in comparison with multicomponent fluid

mixtures in their gas phase. The results of the Monte Carlo simulations indicate that the

statistics of cluster size diversity can contribute to the statistical description of a complex

system.88 The phase behaviors of a multicomponent fluid mixture should be complicated87

when the contribution of the formation of physical clusters is not ignored.

( a ) Occurrence of microscopic nonuniformity known from the behavior of colloidal

particles

For temperatures beyond the consolute point, a binary fluid mixture composed of two

constituents L1 and L2 should be macroscopically homogeneous. For temperatures being
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below the consolute point, the binary mixture is separated into an L1-rich phase and an

L2-rich phase. Then, the binary mixture forms a boundary between the two phases. If

the temperature is raised near the consolute point, the dense areas of L2 particles in the

L1-rich phase should be microscopically developed near the boundary, whereas the dense

areas of L1 particles in the L2-rich phase should be microscopically developed near the

boundary. If colloidal particles are distributed in this complex medium, colloidal particles

that prefer the L2-rich phase should be aggregated close to the boundary in the L2-rich phase

near the consolute point. Further, colloidal particles preferring the L1-rich phase should be

aggregated close to the boundary in the L1-rich phase near the consolute point. Such

phenomena were experimentally demonstrated for the binary fluid mixtures of 2,6-lutidine

plus water.63 Either the aggregation of colloidal particles85 or the contraction of a flexible

linear polymer86 in binary fluid mixtures can be induced by developing the nonuniform

distribution of each constituent.

( b ) Density fluctuations induced in multicomponent fluid mixture

Density fluctuations for a specific constituent in a multicomponent fluid mixture can

induce density fluctuations for other constituents as predicted from the aggregation of col-

loidal particles described above. This phenomenon can be a factor complicating a phase

diagram for a multicomponent fluid mixture. Monte Carlo simulation revealed the compli-

cated phase diagrams for a binary fluid mixture composed of particles interacting with the

attractive force caused by a square-well potential.87 Furthermore, the complexity in the mul-

ticomponent fluid mixture is characterized by the extent of density fluctuations. According

to the results demonstrated by the Monte Carlo simulations,88 the diversity of dense areas

for a constituent can be considered a measurement of the complexity.

( c ) Physical cluster formation in multicomponent fluid mixture

In a multicomponent fluid mixture, particles that interact with each other via mutually

attractive forces that are strong can e↵ectively contribute to the formation of physical clus-

ters. These particles should belong to the group of A. Further, particles that cannot interact

both with each other and with other particles via mutually attractive forces that are strong

cannot e↵ectively contribute to the formation of physical clusters. These particles should

belong to the group of B. Particles within regions surrounded by branches of physical clus-
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ters interact with each other in unbound states. Particles belonging to B can be surrounded

by branches of physical clusters.

Particles belonging to B should receive passively attractive forces generated from the

cooperation between the exclusion of the particles caused by the hard-core potential and

each mutually attractive force between particles belonging to A. Passively attractive forces

need to contribute to driving the phase separation of particles belonging to B; however,

features of forces cannot be simple because they can depend on the stability of physical

clusters. The phase separation of particles that belong to A can be driven by the strength of

each mutually attractive force that interacts between particles belonging to A. The stability

of a phase should be influenced via the growth of physical clusters caused by an increase in

particles belonging to A.

( d ) E↵ects caused by bismuth atoms added in mercury fluid

If particles added into a fluid interact with a su�ciently strongly attractive force between

one of them and another particle composed of the fluid, the addition of the particles should

stabilize the physical clusters in the fluid. Bismuth atoms migrating into physical clusters of

mercury atoms will further stabilize physical clusters if an interaction similar to that caused

by the added particles is achieved when atoms of bismuth are added into a mercury fluid

maintained at a low density at a temperature near the critical point. The stabilization of

the physical clusters achieved by the addition of bismuth atoms will enhance the electrical

conductivity of the mercury fluid because the physical clusters are electrical paths that help

electrons to migrate. Furthermore, their stabilization reduces the pressure of the mercury

fluid because branches of the stabilized physical clusters can confine unbound mercury atoms.

These phenomena caused by the addition of bismuth atoms has already been experimentally

demonstrated.60

( e ) Viscosity anomaly near consolute point

The stability of physical clusters in a fluid mixture should be reduced if the temperature

of the fluid mixture rises. Then, it can become di�cult for branches of the physical clusters

stably to confine particles belonging to the group B stably, within regions surrounded by

their branches. This phenomenon can disturb a macroscopically homogeneous phase of the

fluid mixture. The physical clusters can not only contribute to prohibiting a transition from a
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liquid phase of a fluid to its gas phase, but also prohibit the transition from a macroscopically

homogeneous phase of a multicomponent fluid mixture to its macroscopically inhomogeneous

phase. Therefore, a multicomponent fluid mixture can be considered a good medium for

examining the contribution of physical clusters to phase behavior; however, the mathematical

procedures for examining the mixture becomes complicated.

Hydrodynamical transport phenomena need to be influenced by generating the nonuni-

form distribution of particles in a fluid mixture. The nonuniform distribution of particular

particles can be a significant factor for inducing the viscosity anomaly. The nonuniform

distribution can be developed near the consolute point.

The formation of physical clusters allows a specific distribution structure of particles to be

formed; unbound particles do not homogeneously mix with particles that form the physical

clusters, and they are surrounded by branches of the physical clusters. It is expected that the

distribution structure can play a role in microscopically interpreting phenomena found for

a specific fluid mixture. For a binary fluid mixture, the viscosity anomaly61 can be induced

near the consolute point that corresponds to the critical transition point for demixing the

two constituents macroscopically. It is considered for the distribution structure caused by

the formation of physical clusters to contribute to the viscosity anomaly.

( f ) Binary fluid mixture composed of 2,6-lutidine and water

Particles belonging to a group B can be stably confined within regions surrounded by

branches of physical clusters if their particle sizes are small. If particles have larger sizes

than those of the regions, the stable confinement of these particles will become more di�cult

than that of the small particles. Such size e↵ects can contribute to the phase behavior of

a binary fluid mixture.62 This size e↵ect can contribute to the phase behavior of a binary

fluid mixture of 2,6-lutidine plus water near the consolute point because the size of the

2,6-lutidine molecule is considerably larger than that of the water molecule.

2,6-lutidine molecules should be considered molecules belonging to the group A with

water molecules. Either the attractive force between 2,6-lutidine molecules or that between

a 2,6-lutidine molecule and a water molecule cannot be ignored, although these attractive

forces are weaker than the attractive force between water molecules. Thus, it is possible

for two types of physical clusters to be generated in a binary fluid mixture of 2,6-lutidine

plus water; these include water molecule clusters that are principally composed of water
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molecules and 2,6-lutidine molecule clusters that are principally composed of 2,6-lutidine

molecules. However, a partial amount of 2,6-lutidine molecules should have a tendency to

enter regions surrounded by branches of water molecule clusters. The size e↵ect mentioned

above can induce the phase separation of 2,6-lutidine molecules when 2,6-lutidine molecules

in the binary fluid mixture exceed a specific amount.

2,6-lutidine molecules participating in the formation of a water molecule cluster with wa-

ter molecules can contribute to cutting branches of the water molecule cluster because the

attractive force between 2,6-lutidine molecules is weaker than that between a water molecule

and a 2,6-lutidine molecule. Therefore, 2,6-lutidine molecules participating in the formation

of water molecule clusters can contribute to expanding the sizes of regions surrounded by

branches of the water molecule clusters in cooperation with the temperature e↵ect. If re-

gions surrounded by branches of the water molecule clusters expand, 2,6-lutidine molecules

can be confined within the regions. Then, even 2,6-lutidine molecule clusters should be

found within the regions if the regions are su�ciently large. The contribution of 2,6-lutidine

molecules to the cutting branches of the water molecule cluster can decrease the average

extent of water molecule clusters. Therefore, declining water molecule clusters should allow

2,6-lutidine molecule clusters to exist among them. Thus, it is expected that a macroscop-

ically homogeneous mixture of 2,6-lutidine plus water should be generated, although the

microscopic distribution of water molecules and 2,6-lutidine molecules is nonuniform.

Further, the microscopically nonuniform distribution of 2,6-lutidine molecules can be

developed in binary fluid mixtures of 2,6-lutidine plus water near the consolute point. The

microscopically nonuniform distribution can be realized through the aggregation phenomena

of colloidal particles.63 Density fluctuations in a specific constituent in a multicomponent

fluid mixture can induce density fluctuations for other constituents as predicted from the

aggregation of colloidal particles. This phenomenon can be a factor that complicates a

phase diagram for a multicomponent fluid mixture. The Monte Carlo simulation revealed

such complicated phase diagrams even for a binary fluid mixture composed of particles

interacting with the attractive force caused by a square-well potential.87

( g ) Specific phenomenon appearing near consolute point of fluid mixture

When colloidal particles have mesoscopic sizes as hard-core spheres in the absence of

attractive forces, it is possible for passively attractive forces to be generated between the
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colloidal particles immersed in a molecular fluid mixture. At a temperature near the conso-

lute point of the fluid mixture, a distribution structure that is formed by branches of physical

clusters and unbound molecules surrounded by them can vary considerably. If the average

extent of physical clusters increases beyond that comparable with the diameter of a colloidal

particle, passively attractive forces between the colloidal particles should be strengthened

because the surface of a colloidal particle cannot contribute to the growth of a physical clus-

ter. Thus, it is expected that such attractive forces can contribute to Casimir forces, which

can act between colloidal particles (or between parallel plates) immersed within a binary

fluid mixture near the consolute point (or a single-component fluid near the liquid-vapor

critical transition point).64

( h ) Pair connectedness for multicomponent fluid mixture

Particles belonging to group A should e↵ectively contribute to the magnitude of Pij(r);

those belonging to group B can be a principal portion of particles that contribute to the

magnitude of Dij(r). These particles should have a tendency to be distributed within regions

surrounded by branches of physical clusters. Thus, the distribution structure of particles

characterized by Pij(r) and Dij(r) should play a role for describing several features of a

multicomponent fluid mixture. The percolation concerning physical clusters of particles

belonging to A is estimated using Pij(r).

In a binary component fluid mixture of constituents L1 and L2, the mutually attractive

force between an L1 particle and an L2 particle is considerably smaller than that between

L1 particles. Further, the mutually attractive force between L2 particles is much smaller

than that between L1 particles. Then, physical clusters of L1 particles can be principally

developed under certain conditions. If L2 particles are added into the mixture, then it

is expected that the addition of L2 particles raises the probability that an L1 particle is

located near another L1 particle. However, the percolation concerning physical clusters of

L1 particles can hardly be perturbed by the addition of L2 particles into the mixture.
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D. Closure schemes for two integral equations

1. Formal closure schemes for estimating correlation functions Pij and Dij

An approximate relation between Pij(r) and C
+

ij
(r) is obtained from a formula represent-

ing the PY approximation.3 The procedure for obtaining the approximate relation is the

same as that for a single-component fluid system discussed in II B 4. The procedure can be

summarized as follows.

( a ) Approximate expressions of Pij and Dij

For an L-component fluid mixture system, Eq. (269) and e
��uij(r) = f

+

ij
(r) + f

⇤
ij
(r) + 1

allow a formula g
PY

ij
(r)e�uij = 1+Nij(r) representing the PY approximation to be rewritten

as

g
PY

ij
(r) =f

+

ij
(r)

h
1 +N

+

ij
(r) +N

⇤
ij
(r)

i
+
h
f
⇤
ij
(r) + 1

i
N

+

ij
(r)

+
h
f
⇤
ij
(r) + 1

ih
1 +N

⇤
ij
(r)

i
. (287)

Eq. (287) is divided into terms contributing to Pij(r) and those contributing to Dij(r).

Thus,

Pij(r) = f
+

ij
(r)gPY

ij
(r)e�uij(r) + [f ⇤

ij
(r) + 1][Pij(r)� C

+

ij
(r)], (288)

and

Dij(r) = [f ⇤
ij
(r) + 1][gPY

ij
(r)� c

PY

ij
(r)� Pij(r) + C

+

ij
(r)], (289)

where c
PY

ij
(r)/(1� e

�uij(r)) = g
PY

ij
(r).

Because of Eqs. (262), (264), (265), and (269), Eq. (288) is rewritten as

Pij(r) +
2�[3/2, wij(r)]

⇡1/2e�uij(r) � 2�[3/2, wij(r)]
C

+

ij
(r)

=
2{�(3/2)� �[3/2, wij(r)]}e�uij(r)

⇡1/2e�uij(r) � 2�[3/2, wij(r)]

c
PY

ij
(r)

1� e�uij(r)
, (290)

where wij(r) is defined by Eq. (263). Similarly, Eq. (289) is rewritten as

Dij(r) =
2�[3/2, wij(r)]

2�[3/2, wij(r)]� ⇡1/2e�uij(r)
C

⇤
ij
(r). (291)

According to Eq. (290), the symmetry C
+

ij
= C

+

ji
is maintained because of the symmetry

Pij = Pji. Similarly, Eq. (291) allows the symmetry C
⇤
ij

= C
⇤
ji

to be maintained due to
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the symmetry Dij = Dji. Equations (290) and (291) can be used when either �uij < 0

or �uij > 0. Eqs. (290) and (291) enable Pij(r) and Dij(r) to be characterized by a pair

potential if cPY
ij

(r), C+

ij
(r), and C

⇤
ij
(r) are given. For solving Eq. (270), Eq. (290) becomes a

closure scheme if cPY
ij

(r) is given. If Pij(r) is estimated, Hij(r) can be obtained by solving

Eq. (272) with the use of Eq. (291).

( b ) Advanced interpretation on Eqs. (290) and (291)

Eqs. (290) and (291) implies that separating Pij(r) from gij(r) allows a pair potential

characterizing Pij(r) to be made di↵erent from a pair potential characterizing Dij(r). A pair

potential controlling the behavior of pair particles can depend on their relative momentum

when the behavior of each particle is a↵ected by many-body e↵ects. A pair potential con-

trolling the behavior of pair particles can be specified when a contribution of an attractive

force between them exceeds a contribution of their relative kinetic energy. If many-body

e↵ects are not ignored, then the pair potential can di↵er from that controlling the behavior

of pair particles under a condition that a contribution of their relative kinetic energy exceeds

a contribution of the attractive force between them. Then, the use of Eqs. (290) and (291)

enables Pij(r) and Dij(r) to be estimated.

2. Behavior of correlation functions at large r

( a ) Behavior of C+

ij
for �uij < 0 and 1 ⌧ r/�ij.

The use of the closure scheme given by Eq. (290) does not allow Eq. (270) to solved analyt-

ically. It is necessary to find a practical method of solving Eq. (270) analytically. The integral

equation given by Eq. (270) has the same mathematical structure as the Ornstein–Zernike

equation. With the use of the mean spherical approximation (MSA),36 the Ornstein–Zernike

equation can be solved analytically for some fluids. In the MSA, the direct correlation func-

tion cij is given as the sum of short-range contribution c
0

ij
(r) and long-range contribution

��uij(r). The MSA indicates that cij(r) behaves as cij(r)/(��uij(r)) = 1 and c
0

ij
(r) = 0

outside the e↵ective range of the hard-core potential. According to the analysis of diagrams

of f -bonds, cij(r) represents the contribution of all the non-nodal diagrams of f -bonds.

C
+

ij
(r) represents the contribution of all the non-nodal diagrams of f+-bonds. This implies
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that C
+

ij
has the form given by the sum of the short-range and long-range contributions.

Therefore, a procedure similar to that for the MSA is available for solving Eq. (270).

When the distance (r = rij) between i and j is su�ciently large, |�uij| should be small.

Equation (262) can then be approximated as

pij(r) =
4

3
p
⇡
(��uij)

3/2
�

4

5
p
⇡
(��uij)

5/2

+
2

7
p
⇡
(��uij)

7/2 + · · · . (292)

The substitution of Eq. (292) into Eq. (290) results in

C
+

ij
=

c
PY

ij

��uij

h 4

3
p
⇡
(��uij)

3/2
�

22

15
p
⇡
(��uij)

5/2 + · · ·

i

+Pij

h
��uij �

4

3
p
⇡
(��uij)

3/2
�

1

2
(��uij)

2 +
32

15
p
⇡
(��uij)

5/2 + · · ·

i
. (293)

Therefore, if cPY
ij

/(��uij) = 1 for the MSA is substituted into Eq. (293), the behavior of C+

ij

for 1 ⌧ r/�ij is expressed as

C
+

ij
⇡ 4/(3

p
⇡)(��uij)

3/2
. (294)

To derive Eq. (294) from Eq. (293), the condition (��uij)Pij ⌧ 4/(3
p
⇡)(��uij)3/2 is

assumed for 1 ⌧ r/�ij.

The MSA results in limr!1
gij�1

��uij
= 1

2
with a general assumption limr!1 uij(r) = 0, since

the PY approximation is given as gPY
ij

=
c
PY
ij

1�exp(�uij)
. The condition Pij/(gij�1)  1 is always

satisfied. Thus, Pij for 1 ⌧ r satisfies gij�1

��uij
�

Pij

��uij
. This implies that Pij ⇠ [��uij]⌫ and

1  ⌫ are satisfied. Therefore, limr!1
Pij

(��uij)
1/2 = 0 is derived. Thus, the above assumption

is validated.

( b ) Behavior of Pij for |�uij| ⌧ 1 and 1 ⌧ r/�ij

Using Eq. (292), the expansion of Eq. (290) in powers of ��uij can be performed as

Pij =�
c
PY

ij

��uij

h 4

3
p
⇡
(��uij)

1/2 +
16

9⇡
(��uij) +

⇣ 64

27⇡3/2
�

4

5
p
⇡

⌘
(��uij)

3/2 + · · ·

i

+
C

+

ij

��uij

h
1 +

4

3
p
⇡
(��uij)

1/2 +
⇣1
2
+

16

9⇡

⌘
(��uij) + · · ·

i
. (295)

If the approximation given by Eq. (294) and c
PY

ij
/(��uij) = 1 caused by the MSA are

considered in Eq. (295), the result can be expressed as

Pij ⇡
22

15
p
⇡
(��uij)

3/2 for uij < 0. (296)
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If a physical cluster in the fluid mixture has a fractal structure, then Pij(r) given by Eq.

(296) represents the characteristics of the fractal structure.

( c ) Behavior of C⇤
ij
for |�uij| ⌧ 1 and 1 ⌧ r/�ij

Equation (260), relation c
PY

ij
/(��uij) = 1 caused by the MSA , and behavior of Pij(r)

given by Eq. (296) allow the relation g
PY

ij
(r) = c

PY

ij
(r)/{1� exp[�uij(r)]} to result in

Dij(r)� 1 ⇡ �(1/2)�uij(r) for 1 ⌧ r/�ij. (297)

Because of Eq. (297), Eqs. (262) and (292) allow Eq. (291) to result in

C
⇤
ij
(r) ⇡ ��uij(r) for 1 ⌧ r/�ij. (298)

3. Simple closure schemes similar to MSA

( a ) Expression of simple closure schemes similar to MSA

The direct correlation function cij(r) formed by the contribution of all non-nodal dia-

grams comprising paths of f -bonds between the two root points is given as the sum of the

short-range and long-range contributions. A correlation function C
+

ij
(r) is formed by the

contribution of all non-nodal diagrams that have at least one path of all f+-bonds between

the two root points. Thus, C+

ij
can be given as the sum of the short-range and long-range

contributions.37 Further, a correlation function C
⇤
ij
can be given as the sum of the short-range

and long-range contributions because of C⇤
ij
= cij � C

+

ij
.

Owing to the consequence given by Eq. (294), an analogy with the MSA allows C+

ij
to be

expressed as

C
+

ij
= C

0+

ij
+

4

3
p
⇡
(��uij)

3/2 for �uij < 0, (299)

where C
0+

ij
is the short-range contribution, i.e.,

C
0+

ij
(r) = 0, for r � �ij. (300)

Here, �ij is defined as

�ij ⌘
1

2
(�i + �j), (301)
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where �i and �j denote the diameters of the hard cores of i and j particles (i.e., particles of

species i and j), respectively. Thus, Eq. (270) can be solved using the closure scheme given

as Eq. (299).

Owing to the consequence given by Eq. (298), an analogy with the MSA allows C⇤
ij
to be

expressed as

C
⇤
ij
= C

0⇤
ij

+ (��uij) for �uij < 0, (302)

where C
0⇤
ij

denotes the short-range contribution, i.e.,

C
0⇤
ij
(r) = 0, for r � �ij. (303)

The formula given by Eq. (302) is available for either �uij < 0 or �uij > 0. Thus, Eq. (272)

can be solved using the closure scheme given by Eq. (302).

( b ) E↵ective range in which Pij(r) 6= 0

The consequence obtained from recursively solving Eq. (270) indicates that particles (i.e.,

species k1, k2, · · · ) distributed around i and j particles (i.e., particles of species i and j) allow

the correlation function Pij(r) to decay to zero more slowly than C
+

ij
(r) decays. C+

ij
(r) can

decay to zero more rapidly than ��uij(r), which represents a microscopic feature. The

e↵ective range in which C
+

ij
(r) 6= 0 is satisfied remains microscopic according to Eq. (299).

Yet, Pij(r) 6= 0 can be satisfied for a large r at which C
+

ij
(r) ⇡ 0 is satisfied.

The recursive solution of Eq. (270) guarantees that a feature of Pij(r) estimated with the

use of Eq. (299) can become macroscopic. The recursive solution for Pij is given as

Pij =C
+

ij
+

LX

k1=1

⇢k1

Z
C

+

ik1
C

+

k1j
dr(k1)

3

+
LX

k1=1

LX

k2=1

⇢k1⇢k2

Z Z
C

+

ik1
C

+

k1k2
C

+

k2j
dr(k1)

3
dr(k2)

4
+ · · · . (304)

If a fluid mixture system includes extremely large physical clusters, Pij(r) should have a

long-range feature on the macroscopic scale even if C+

ij
(r) retains a microscopic feature.

The long-range feature is formed by convolution integrals found in Eq. (304).

If contributions of particles (k1, k2, · · · ) distributed around the i and j particles are not

negligible in Eq. (304), it is possible for Pij(r) to remain nonzero even out of the e↵ective

range where C
+

ij
(r) 6= 0is satisfied. The pair connectedness Pij(r) that must satisfy the
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integral equation given by Eq. (270) involves contributions of many particles expressed as

convolution integrals found in Eq. (304). This implies that the pair connectedness Pij(r)

derived from the use of an approximate C+

ij
(r) involves the contributions of many particles,

even when the approximate C
+

ij
(r) results from the contributions of limited principal par-

ticles. Even without the use of an accurate C
+

ij
(r) obtained from the contributions of all

particles that should be considered, it possible to succeed in replying to the necessity of

considering the contributions of many particles if Pij(r) satisfy the integral equation formed

by Eq. (270) and the approximate C
+

ij
(r) .

Pij is proportional to the probability that both i and j particles belong to the same

physical cluster. Indeed, each term on the right-hand side of Eq. (304) is proportional

to the probability that both the i and j particles belong to the same physical cluster via

the contribution of other particular particles (k1, k2, · · · ). The first term C
+

ij
without the

contribution of other particular particles (k1, k2, · · · ) is proportional to the probability. The

first term C
+

ij
has a simpler bonding structure compared to that of the other terms.

( c ) E↵ective range in which Hij(r) 6= 0

The e↵ective range in which C
⇤
ij
(r) 6= 0 remains microscopic according to Eq. (302). The

recursive solution of Eq. (272) guarantees that a feature of Hij(r) estimated with the use of

Eq. (302) can become macroscopic.

i ) Basis of usefulness of MSA

The MSA allows the direct correlation function cij(r) to decay to zero as rapidly as

��uij(r). Then, the e↵ective range in which uij(r) 6= 0 is satisfied retains a microscopic

feature. The correlation function gij(r) � 1 can decay to zero much slower than cij(r).13,18

The recursive solution of the Ornstein–Zernike equation is given by

gij � 1 =cij +
LX

k1=1

⇢k1

Z

V

cik1ck1jdr
(k1)

3

+
LX

k1=1

LX

k2=1

⇢k1⇢k2

Z

V

Z

V

cik1ck1k2ck2jdr
(k1)

3
dr(k2)

4
+ · · · . (305)

Convolution integrals found in Eq. (305) denote contributions from particles (k1, k2, · · · ),

which are distributed around i and j particles. These contributions cause the behavior of
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gij � 1 to di↵er from the behavior of cij. The recursive solution indicates that the pair cor-

relation function gij(r) that satisfies requirements based on the Ornstein–Zernike equation

involves the contributions of many particles. This allows the pair correlation function gij(r)

derived from the use of an approximate cij(r) to involve contributions of many particles,

even when the approximate cij(r) results from the contributions of limited principal parti-

cles. Without the use of an accurate cij(r) obtained from the contributions of all particles

which should be considered, gij(r) estimated from the Ornstein–Zernike equation and the

approximate cij(r) replies to the necessity of considering the contributions of many particles.

ii ) Usefulness of approximate C
⇤
ij
(r)

As known from the case of gij(r) � 1, particles (k1, k2, · · · ) distributed around i and j

particles enable the correlation function Hij(r) to decay to zero considerably slower than

C
⇤
ij
(r) decays. C⇤

ij
(r) can decay to zero as rapidly as ��uij(r), which expresses a microscopic

feature. Hij(r) 6= 0 is satisfied at a large r where C⇤
ij
(r) ⇡ 0 is satisfied. This can be known

through a solution obtained by recursively solving Eq. (272) for Hij. The recursive solution

for Hij is given as

Hij =C
⇤
ij
+

LX

k1=1

⇢k1

Z

V

cik1C
⇤
k1j

dr(k1)
3

+
LX

k1=1

LX

k2=1

⇢k1⇢k2

Z

V

Z

V

cik1ck1k2C
⇤
k2j

dr(k1)
3

dr(k2)
4

+

+
LX

k1=1

⇢k1

Z
C

⇤
ik1
Pk1jdr

(k1)

3
+

LX

k1=1

LX

k2=1

⇢k1⇢k2

Z

V

Z

V

cik1C
⇤
k1k2

Pk2jdr
(k1)

3
dr(k2)

4

+
LX

k1=1

LX

k2=1

LX

k3=1

⇢k1⇢k2⇢k3

Z

V

Z

V

Z

V

cik1ck1k2C
⇤
k2k3

Pk3jdr
(k1)

3
dr(k2)

4
r(k3)
5

+ · · · . (306)

The magnitude of Hij(r) at a large r, where C⇤
ij
(r) ⇡ 0 is satisfied, remains a finite value

that is not zero because of the convolution integrals. The correlation function Hij(r), which

satisfies the integral equation given by Eq. (272), involves the contributions of many particles

that are expressed as convolution integrals found in Eq. (306). The correlation function

Hij(r) satisfying Eq. (272) with the use of an approximate C⇤
ij
(r) involves the contributions

of many particles, even when the approximate C⇤
ij
(r) results from the contributions of limited

principal particles. Without the use of an accurate C⇤
ij
(r) obtained from the contributions of

all particles that should be considered, Hij(r) that satisfies the integral equation formed by

Eq. (272) and the approximate C⇤
ij
(r) replies to the necessity of considering the contributions

of many particles.
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( d ) Expression of practical closure scheme similar to MSA

A mutually attractive force between particles must be characterized by a pair potential

for analyzing an L-component fluid mixture system. Hence, the contribution �uij of the pair

potential must characterize the interaction between a particle of species i (an i particle) and

a particle of species j (a j particle). Thus, it is assumed that �uij is given by a potential

formed as the sum of N terms to analyze the L-component fluid mixture system. The

potential is expressed as

��uij(r) =
NX

n=1

k
(n)

0
d
(n)

i
d
(n)

j

exp(�znr)

r
for r � �ij. (307)

Then, the closure scheme given by Eq. (299) is expressed as

C
+

ij
(r) = C

0+

ij
(r) +

4

3
p
⇡

 NX

n=1

k
(n)

0
d
(n)

i
d
(n)

j
exp(�znr)

�3/2 1

r3/2
. (308)

Here, zn and k
(n)

0
are independent of the species of the particle. A factor k(n)

0
is propor-

tional to 1/kBT , and it is proportional to the strength of a common e↵ect that contributes

to each mutually attractive force that causes two particles to interact with each other. 1/zn

represents a feature that corresponds to the e↵ective range of the mutually attractive force

between the two particles. A factor d(n)
i

represents the feature of an i particle, and it repre-

sents the strength of a common e↵ect contributing to each interaction that occurs between

the i particle and another particle. Further, the feature of the i particle is independent of

the magnitude of k(n)

0
.

The decrease in C
+

ij
(r) caused by each term of the exponential function can be con-

siderably more dominant than that caused by the factor (1/r)3/2, as r increases. Hence,

significant terms that contributes to the long-range contribution of the closure scheme need

to be extracted from the terms included in the factor
hP

n
k
(n)

0
d
(n)

i
d
(n)

j
exp(�znr)

i3/2
in Eq.

(308) by considering an assumption made as

0 < z1  z2  · · ·  zN < 1. (309)

Based on this assumption, the above factor should be modified as
 NX

n=1

k
(n)

0
d
(n)

i
d
(n)

j
exp(�znr)

�3/2
⇡


k
(1)

0
d
(1)

i
d
(1)

j
exp(�z1r)

�3/2

⇥


1 +

3

2

exp(z1r)

k
(1)

0
d
(1)

i
d
(1)

j

NX

n=2

k
(n)

0
d
(n)

i
d
(n)

j
exp(�znr)

�
. (310)
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Then, the terms on the right-hand side of Eq. (310) correspond to significant terms that

should be considered in the long-range contribution of the closure scheme

An approximate expression for the factor (1/r)3/2 in Eq. (308) can be given by Eq.

(83). The approximate expression help avoid the mathematical di�culty caused by (1/r)3/2

when solving Eq. (270) analytically. According to Eq. (83), the approximate expression is

expressed as

1

r3/2
⇡ �

�1/2

ij
exp[f⌫ ] exp[�(f⌫/�ij)r]

1

r
. (311)

In this expression, the value of f⌫ need to satisfy the relation 0 < f⌫  1/2. Despite this,

Eq. (84) allows the value of f⌫ to be reasonably determined without the restriction given by

Eq. (82). Thus, a reasonable value of f⌫ can be obtained as a solution of Eq. (85) for n̂ = 3.

This value is expressed as f⌫ ⇡ f⌫3/2 with f⌫3/2 = 0.1018532115.

Equations (311) and (310) yield an approximate expression for a long-range contribution

of the closure scheme; thus, the approximate expression for Eq. (308) is derived. The

approximate expression is characterized by the parameter f⌫ , and expressed as

C
+

ij
(r) = C

0+

ij
(r) +

NX

n=1

k̆
n

0
d̆
n

i
d̆
n

j

exp(�z̆nr)

r
, (312)

where

0 < z̆1  z̆2  z̆3  · · · , (313)

z̆1= z1 +
f⌫

a
, (314)

z̆n= zn +
1

2
z1 +

f⌫

a
, (n = 2, 3, · · · ,N ), (315)

k̆
1

0
d̆
1

i
d̆
1

j
=

4 exp(f⌫)

3
p
⇡
p
a
(k(1)

0
)3/2(d(1)

i
)3/2(d(1)

j
)3/2, (316)

and

k̆
n

0
d̆
n

i
d̆
n

j
=

2 exp(f⌫)
p
⇡
p
a

(k(1)

0
)1/2k(n)

0
(d(1)

i
)1/2d(n)

i
(d(1)

j
)1/2d(n)

j
, (n = 2, 3, · · · ,N ), (317)

with
8
>>>><

>>>>:

a = �ij,

0 < f⌫  1/2

or f⌫ ⇡ f⌫3/2 with f⌫3/2 = 0.1018532115.

(318)
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If the closure expressed as Eq. (312) is used, then the integral equation system given by Eqs.

(270) and (312) can be solved based on the method for exactly solving the Orstein-Zernike

equation system82,84 that has the Yukawa closure for the MSA.

Further, the approximation given by Eq. (312) for f⌫ = 0 overestimates the long-range

contribution of C+

ij
(r). This is because the approximation specified for f⌫ = 0 implies that

the long-range contribution described by the factor (1/r)3/2 in Eq. (308) is approximated as

(1/
p
a)(1/r). The alternative approximation given by Eq. (312) for f⌫ = 1/2 overestimates

the decay of C+

ij
(r) dependent on r because the long-range contribution described by the

factor (1/r)3/2 in Eq. (308) is approximated as (e1/2/
p
a)(1/r) exp[�r/(2a)].

According to a previous study on Yukawa fluids8, overestimation of the long-range con-

tribution of C+

ij
(r) can lead to an overestimation of 1/(k̆n

0
d̆
n

i
d̆
n

j
) at the percolation threshold.

However, the diagram of the percolation threshold for overestimating the long-range contri-

bution has the same pattern as that for overestimating the decay of C+

ij
(r).
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E. Solution of integral equation for Pij(r)

Equation (270) and the practical closure scheme given by Eq. (312) result in an integral

equation system that can be solved analytically without an additional approximation. Then,

a mathematical procedure similar to that used for solving the Orstein-Zernike equation43,83,84

is used. The use of Baxter’s Q function43 enables Pij(r) and C
+

ij
(r) to be estimated from

Eq. (270) for the L-component fluid mixture.37,52

1. Fourier transforms of integral equations

If each correlation function is expressed as Fij(r) that satisfies limr!0 rFij(r) = 0, then a

Fourier transform of Fij(r) is given as

eFij(k) ⌘ lim
V!1

(⇢i⇢j)
1/2

Z

V

Fij(r) exp[ik · r]dr

=4⇡(⇢i⇢j)
1/2

Z 1

0

cos krdr

Z 1

r

tdtFij(t) (r ⌘ |r|, k ⌘ |k|). (319)

If V is macroscopic, the integral
p
⇢i⇢j

R
V
Fij(r)eik·rdr can be expressed as eFij(k), which is

given by Eq. (319). According to the expression of Eq. (319), the Fourier transform of Eq.

(270) is given as

LX

k=1


�ik �

eC+

ik
(k)

�
ePkj(k) = eC+

ij
(k). (320)

The Fourier transform of Eq. (272) is given as

LX

k=1


�ik �

eC⇤
ik
(k)� eC+

ik
(k)

�
eHkj(k) = eC⇤

ij
(k) +

LX

k=1

eC⇤
ik
(k) ePkj(k). (321)

The Fourier transform of the Ornstein–Zernike equation expressed as Eq. (271) is given as

LX

k=1


�ik � ecik(k)

�h
ePkj(k) + eHkj(k)

i
= ecij(k), (322)

where

ecij(k) = eC+

ij
(k) + eC⇤

ij
(k) (323)

because of Eq. (268).
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The use of Baxter’s Q function43 allows the equation given by Eq. (320) to be expressed

as
8
>>>><

>>>>:

PL
k=1

[�ik + ePik(k)] eQ+

kj
(k) = eQ+(�1)

ij
(�k)

�ij �
eC+

ij
(k) =

PL
k=1

eQ+

ik
(k) eQ+

jk
(�k),

PL
k=1

eQ+(�1)

ki
(�k) eQ+

jk
(�k) = �ij �ii = 1; �ij = 0 (i 6= j).

(324)

If an inverse Fourier transform is applied to the first and second equations included in

Eq. (324), the following equations can be obtained as

2⇡rPij(r) =�
d

dr
Qij(r)

+2⇡
LX

k=1

⇢k

Z 1

�jk

Qkj(t)(r � t)Pik(|r � t|)dt,

for �ji  r < 1, (325)

and

2⇡rC+

ij
(r) =�

d

dr
Qij(r)

+
LX

k=1

⇢k

Z 1

sup[�kj ,�ki�r]

Qjk(t)
d

dr
Qik(r + t)dt,

for �ji  r < 1, (326)

where �ji is defined as �ji ⌘
1

2
(�j � �i). The function Qij(r) in Eqs. (325) and (326) is

introduced as

eQij(k) = �ij � (⇢i⇢j)
1/2

Z 1

�ji

e
ikr

Qij(r)dr, (327)

where �ij = 0 (i 6= j) and �ii = 1.

The short-range contribution to C
+

ij
(r) is expressed as C

0+

ij
(r) in Eq. (300). The corre-

lation function C
+

ij
(r) is related to Qij(r) via Eq. (326). Hence, the characteristic of the

short-range contribution C
0+

ij
(r) is provided by Qij(r). Similarly, the characteristic of the

long-range contribution to C
+

ij
(r) is related to a form of Qij(r). Therefore, Qij(r) must be

expressed as

Qij(r) = Q
0

ij
(r) +

NX

n=1

D
n

ij
e
�z̆nr (�ji < r < �ji), (328)
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Qij(r) =
NX

n=1

D
n

ij
e
�z̆nr (�ji  r), (329)

and

Q
0

ij
(r) = 0 (�ji  r). (330)

In the above, Dij (i, j = 1, 2, · · · ,L) are unknown coe�cients, and these coe�cients must

be determined via the use of Eqs. (325) and (326).

Hard-core potentials that are characterized by uij(r) = 1 at r = �ij allow lim�!0 gij(�ij+

�) = 0 (� > 0) to be satisfied. Similarly, lim�!0 Pij(�ij+�) = 0 (� > 0) is satisfied because of

Eqs. (265) and (288); hence, Pij(r) = 0 for �ji < r < �ji is derived. This feature maintained

by Pij(r) requires the function Qij(r) derived from Eq. (325) for |⇢k| ⌧ 1 to not include the

powers of r in the range �ji < r < �ji. If this fact is considered with the behavior of Qij(r)

expressed by Eq. (328), the feature of Q0

ij
(r) given by Eq. (330) requires Q

0

ij
(r) to have a

specific form, i.e.,

Q
0

ij
(r) =

NX

n=1


�D

n

ij
+ 2⇡

LX

k=1

⇢k

z̆n

bPik(z̆n)D
n

kj

�
(e�z̆nr � e

�z̆n�ij)

(�ji < r < �ji), (331)

where

bPik(z̆n) ⌘

Z 1

0

Pik(t)e
�z̆nttdt. (332)

Because of Eq. (313), the quantities bPik(z̆n) should satisfy

bPik(z̆1) � bPik(z̆2) � · · · (0 < z̆1  z̆2  · · · ). (333)

Thus, the quantity bPik(z̆n) is small, if the e↵ective range of the attractive force between

pair particles i and k is short. The e↵ective range of the attractive force between the pair

particles is characterized by the coe�cient z̆n given by Eq. (314).

2. Formulas for determining coe�cients bPij(z̆n) and D
n

ij

( a ) Formula for determining bPij(z̆n) and D
n

ij
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Equations (328)–(330) and Pij(r) = 0 should be satisfied over the range �ji < r < �ji;

hence, Eq. (325) for r < �ji yields the following formula because of Eq. (331):
NX

n=1

z̆n


�D

n

ij
+ 2⇡

LX

k=1

⇢k

z̆n

bPik(z̆n)D
n

kj

�
e
�z̆nr +

NX

n=1

z̆nD
n

ij
e
�z̆nr

� 2⇡
LX

k=1

NX

n=1

⇢kD
n

kj
e
�z̆nr

Z 1

0

Pik(t)e
�z̆nttdt = 0. (334)

If Eq. (329) is considered, then Eq. (326) can be rewritten as

2⇡rC+

ij
(r) =

NX

n=1

z̆nD
n

ij
e
�z̆nr �

NX

n=1

z̆ne
�z̆nr

LX

k=1

⇢kD
n

ik
bQjk(z̆n), for �ji < r, (335)

where

bQjk(s)⌘

Z 1

�kj

Qjk(t)e
�stdt

=
NX

m=1

h
�D

m

jk
+ 2⇡

LX

l=1

⇢l

z̆m

bPjl(z̆m)D
m

lk

i
e
�s�kje

�z̆m�kj

⇥

⇣
e
z̆m�j � e

�s�j

s+ z̆m
�

1� e
�s�j

s

⌘
+

1

s+ z̆m
D

m

jk
e
�z̆m�kje

�s�kj

�
. (336)

Here, Eq. (336) can be derived using Eqs. (328)–(331). The relation between bPjk(z̆n) and

bQjk(z̆n) can be obtained from Eq. (336) as

bQjk(z̆n)= e
�z̆n�kj

NX

m=1

(
e
�z̆m�kjD

m

jk

⇣
e
�z̆n�j

z̆n + z̆m
+

1� e
�z̆n�j

z̆n

⌘

+
LX

l=1

2⇡⇢l
z̆m

bPjl(z̆m)D
m

lk

h
e
�z̆m�kj

z̆n + z̆m
� e

�z̆m�kj

⇣
e
�z̆n�j

z̆n + z̆m
+

1� e
�z̆n�j

z̆n

⌘i)
. (337)

By considering Eqs. (328) and (331), Eq. (325) for r < �ji can be rewritten as

0 =
NX

n=1

z̆n


�D

n

ij
+ 2⇡

LX

k=1

⇢k

z̆n

bPik(z̆n)D
n

kj

�
e
�z̆nr +

NX

n=1

z̆nD
n

ij
e
�z̆nr

+2⇡
LX

k=1

⇢k

Z 1

r

Qkj(t)(r � t)Pik(|r � t|)dt. (338)

Equation (338) is equivalent to Eq. (334), which has no singularity for 0 < r < 1; hence,

Eq. (338) is satisfied for 0 < r < 1. If the terms in Eq. (338) are then subtracted from

those in Eq. (325) for �ji  r, a formula can be derived as

2⇡rPij(r) = �

NX

m=1

z̆m


�D

m

ij
+ 2⇡

LX

k=1

⇢k

z̆m

bPik(z̆m)D
m

kj

�
e
�z̆mr

+2⇡
LX

k=1

⇢k

Z
r

�jk

Qkj(t)(r � t)Pik(r � t)dt. (339)
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The Laplace transformation of Eq. (339) results in

2⇡ bPij(s) =�

NX

m=1

z̆m

s+ z̆m
e
�(s+z̆m)�ij


�D

m

ij
+ 2⇡

LX

k=1

⇢k

z̆m

bPik(z̆m)D
m

kj

�

+2⇡
LX

k=1

⇢k
bPik(s) bQkj(s). (340)

Ultimately, substituting Eq. (337) into Eq. (340) for s = z̆n alows the relation between

bPij(z̆n) and D̆
n

ij
to be determined by

2⇡ bPij(z̆n) =
NX

m=1

z̆m

z̆n + z̆m
e
�(z̆n+z̆m)�ij

⇣
D

m

ij
� 2⇡

LX

k=1

⇢k

z̆m

bPik(z̆m)D
m

kj

⌘

+2⇡
LX

k=1

⇢k
bPik(z̆n)e

�z̆n�jk

NX

m=1

(
e
�z̆m�jkD

m

kj

⇣
e
�z̆n�k

z̆n + z̆m
+

1� e
�z̆n�k

z̆n

⌘

+
LX

l=1

2⇡⇢l
z̆m

bPkl(z̆m)D
m

lj

h
e
�z̆m�jk

z̆n + z̆m
� e

�z̆m�jk

⇣
e
�z̆n�k

z̆n + z̆m
+

1� e
�z̆n�k

z̆n

⌘i)
. (341)

( b ) Another formula for determining bPij(z̆n) and D
n

ij

If Eq. (300) is considered, the substitution of Eq. (312) into Eq. (335) results in
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Further, substituting Eq. (337) into Eq. (342) yields another formula to determine the rela-

tion between bPij(z̆n) and D
n

ij
as follows:
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. (343)

( c ) Simplification of two formulas

Each term on the right-hand side of Eq. (341) includes coe�cients Dn

ij
with su�x j. Each

term on the right- hand side of Eq. (343) includes coe�cients D
n

ij
with su�x i. The term
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on the left-hand side of Eq. (343) is formed by a product composed of a factor related to

su�x i and that related to su�x j. This implies that a coe�cient Dn

ij
can be divided into

factors related to su�xes i and j. Thus, coe�cient Dn

ij
is given as

D
n

ij
= �d̆

n

i
a
n

j
exp(z̆n�j/2), (344)

where a
n

j
is an unknown coe�cient.

Further, to simplify Eq. (341), a coe�cient Pn

j
is defined as

P
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⌘ 12
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(345)

where �l is the volume fraction of species l given as

�l ⌘
⇡

6
⇢l�

3

l
. (346)

The coe�cient P
n

j
defined by Eq. (345) must always be positive because d̆

n

j
/�j should be

positive for each value of j and each value of n. According to Eq. (333), the coe�cient Pn

j

should be small if the e↵ective range characterized by z̆n is short.

The use of Eqs. (344), (345), and (346) simplifies Eq. (341) as

�P
n

j
=
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x
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j
x
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(347)

where

x
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Further, the use of Eqs. (344), (345), and (346) simplifies Eq. (343) as
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3. Coe�cients estimated for two terms’ potential (N = 2)

The potentials composed of the two terms are remarkable for describing the simplest fluid

mixture, and are expressed by Eq. (307) for N = 2. Further, the fluid mixture can involve

two species of particles: one includes particles interacting with each other via a mutually

attractive force contributing only within a short range, and the other includes particles

interacting with each other via a mutually attractive force contributing over a long range.

For N = 2, coe�cients aj/�j can be readily derived from Eq. (347) as

a
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= �
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X
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and

x ⌘ x
11
x
22
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x
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. (355)

To derive an equation to determine unknown coe�cients P
m

j
, Eq. (353) is substituted

into Eq. (352), which results in
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where X
nm

j
and x include P

m

j
because of Eq. (349).
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4. Value of Pij(�ij) estimated for N = 2

The behavior of the pair connectedness Pij(r) can be readily estimated for r = �ij with

the particular distance at which hard spheres of i and j particles contact each other. The

second term on the right-hand side of Eq. (325) is a continuous function of r at r = �ij.

Thus, the pair connectedness Pij(r) given by Eq. (325) must satisfy
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2⇡�ij
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o
. (357)

If Eqs. (330), (331), (344), and (345) are considered with Pij(r) = 0 (r < �ij) after

substituting Eq. (328) into Eq. (357), the pair connectedness Pij(r) at r = �ij can be found

as
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For N = 2, the use of Eq. (353) allows Eq. (358) to be expressed as
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. (359)

The probability that a particle of i species exists in the immediate vicinity of a particle of j

species can be known because the magnitude of Pij(�ij) is proportional to the probability.

175



F. Mean size S of physical clusters

1. Estimate of of S for an L-component fluid mixture

The mean physical cluster size S can be related to the pair connectedness Pij because of

Eq. (281). The relation between the pair connectedness Pij and Baxter’s Q function can be

expressed by Eq. (324). A specific relation is derived from the first equation in Eq. (324) as

lim
k!0

ePij(k) =(⇢i⇢j)
1/2

Z
Pij(r)dr
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k!0
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(k)� �ij. (360)

Ultimately, substituting Eq. (360) into Eq. (281) allows the mean physical cluster size S to

results in
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Equation (361) denotes that the mean physical cluster size diverges to infinity if eQ�1

ij
(0)

reaches infinity. eQ�1

ij
(0) = 1 indicates the occurrence of the percolation of physical clusters.

The comparison between Eqs. (327) and (336) allows the relation between eQij(0) and

bQij(0) to be found. Thus, eQij(0) is given as
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If Eq. (336) for s = 0 is used with Eqs. (344)–(346), an expression for bQij(0) can be derived

as
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If N is restricted as N = 2, then eQij(0) can be given as

eQij(0) = �ij +
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2. Percolation requirements

( a ) Percolation requirement for two-component mixture (L = 2, N = N )

The inverse eQ�1

ij
(0) can be readily estimated for a two-component mixture comprising

particles interacting with each other via mutually attractive forces described by N terms’

potentials. Thus, the use of Eq. (362) results in eQ�1

ij
(0) expressed as
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(368)

The final line in the above equation is obtained using the relation given by Eq. (363).

If det | eQij(0)| reaches zero under a certain condition, then eQ�1

ij
(0) diverges to infinity.

This implies that the mean physical cluster size S given by Eq. (361) diverges to infinity.

Therefore, the percolation threshold concerning the percolation of the physical clusters can

be estimated as particular states satisfying

det | eQij(0)| = 0. (369)

( b ) Percolation requirement for two-component mixture (L = 2, N = 2)

The percolation threshold can be readily estimated for a two-component fluid mixture

(L = 2) composed of particles interacting with each other via mutually attractive forces
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caused by two terms’ potentials (N = 2). After substituting Eqs. (353) into Eq. (368), Eq.

(369) result in

x+
6

⇡

2X

l=1

�l


Q

1

l

✓
x
22

x
1

l

P
1

l
�

x
12

x
2

l

P
2

l

◆
+Q

2

l

✓
�
x
21

x
1

l

P
1

l
+

x
11

x
2

l

P
2

l

◆�

+

✓
6

⇡

◆2

�1�2

�
Q

1

1
Q

2

2
�Q

2

1
Q

1

2

�✓ 1

x
1

1
x
2

2

P
1

1
P

2

2
�

1

x
1

2
x
2

1

P
2

1
P

1

2

◆
= 0. (370)

To derive Eq. (370), Eq. (354) must be considered. Thus, a particular state satisfying Eq.

(370) allows the physical clusters of macroscopic sizes induced at the percolation threshold

to be found within the two-component fluid mixture.

Furhter, the two terms’ potential (N = 2) enables a mutually attractive force between

particles of species 1 to be distinguished from a mutually attractive force between a particle

of species 1 and a particle of species 2, and it allows the mutually attractive force between

particles of species 1 to be distinguished from a mutually attractive force between particles

of species 2. Hence, the estimations of the percolation threshold described by Eq. (370) can

contribute to identifying the variations of percolation behaviors caused by the distinctions

among these attractive forces.

3. Estimate of S for two-component fluid mixture

The mean size of physical clusters S can be estimated for a two-component mixture

system (L = 2) composed of particles interacting with each other via mutually attractive

forces caused by two-term potentials (N = 2). For a two-component mixture (L = 2), the

use of Eqs. (353), (363), and (367) allows Eq. (361) to result in
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G. Pair correlation function

1. Pair correlation function for L-component fluid mixture

For the potential given as Eq. (307), the Ornstein–Zernike equation can be solved

analytically.82,84 If the solutions82,84 given for the potential are modified, the correlation

function gij(r) can be expressed as
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A coe�cient expressed as B(n)
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in Eq. (372) is defined as
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Then, the values of B(n)
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where the coe�cient Mmn

jkl
in Eq. (375) are defined as
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2. Estimation for two-component fluid mixture

For N = 2, the factor zn�je
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H. Two-component specific fluid mixture system

1. Formulae for evaluating correlation functions

( a ) Specific fluid mixture

All coe�cients expressed as Pn

j
in Eq. (356) must be assessed to evaluate the percolation

threshold for a fluid mixture composed of particles interacting with each other through a

two-term potential (N = 2). The evaluation of the coe�cients can be simplified for a

two-component specific fluid mixture. This fluid mixture is specified as

�1 = �2 = �, (381)

z1 = z, 0 < z� < z2�, 1 ⌧ z2�, (382)
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Then, Eqs. (314)–(317) result in
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Thus, Eqs. (388) and (389) lead to the simplest assumption made as
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and
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Therefore, according to Eqs. (386)–(389) and Eqs. (390)–(391), Eqs. (381)–(385) require

that the parameters for estimating the pair connectedness be expressed as

z̆1 ⌘ z̆, 0 < z̆� < z̆2�, z̆�/z̆2� ⌧ 1, (392)
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For �1 = �2 = �, Eq. (352) can be rewritten as
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where Y
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and Z
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are defined as
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The above two coe�cients behave as limz̆m�!1 Y
mn

< 1 and limz̆m�!1 Z
mn

< 1.

For an extremely large z̆2� satisfying 0 < z̆/z̆2 ⌧ 1, coe�cients an
j
given by Eq. (353) are

required to satisfy a
1

j
6= 0 and a

2

j
⇡ 0 (which are known from Eqs. (427) and (428)). Hence,

this allows Eq. (396) to be simplified as

2⇡
k̆
1

0

z̆

d̆
1

j

�
e
�z̆�/2

⇡�
a
1

j

�
�

3

⇡

✓
�1

a
1

1

�

a
1

1

�
+ �2

a
1

2

�

a
1

2

�

◆

⇥
e
z̆�

(z̆�)2


d̆
1

j

�
(z̆�)2e�z̆�/2

Y
11

+ P
1

j
Z

11

�
, (399)

183



A specific fluid mixture described by Eqs. (381)–(385) is a two-component fluid mixture

that comprises particles of species i = 1 and the other particles of species i = 2. Particles

specified by i = 1 interact with each other through the contributions of the hard-core

potential and mutually attractive force. Particles specified by i = 2 interact with each other

only through the contribution of the hard-core potential. Within the fluid mixture, the

hard-core spheres interacting with each other via the contribution of the mutually attractive

force are mixed with the hard-core spheres interacting with each other in the absence of

mutually attractive forces.

Further, it is easy to assess the pair connectedness Pij(�) and the pair correlation function

gij(�), if d̆/� = 1 is selected. For this condition, the relation d/� = 1 is satisfied because of

Eq. (390). Then, Eqs. (386) and (388) results in
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( b ) Pair connectedness Pij(�)

A mutual attractive force acts between particles of species 1. No mutual attractive force

acts between particle of species 1 and that of species 2. Moreover, no mutual attractive

force acts between particles of species 2. Then, the three types of pair connectedness are

required to satisfy P11(r) 6= 0, P12(r) = P21(r) = 0, and P22(r) = 0. Equation (358) allows

the three types of pair connectedness to be estimated for the fluid mixture characterized by

Eqs. (392)–(395). They are given as
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P12(�) ⇡ 0, P21(�) ⇡ 0, and P22(�) ⇡ 0. (402)

A coe�cient a1
1
for the fluid mixture is given by Eq. (440) in the appendix of this chapter

(IIIH 4), i.e.,

a
1

1

�
⇡ �

1

x
1

1
x11

P
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1
.

Then, another coe�cient a1
2
is required to satisfy a

1

2
/� ⇡ 0. Coe�cients x1

1
and x

11 for the

fluid mixture are expressed as Eqs. (415) and (442) in the appendix of this chapter (III H 4).

The product x1

1
x
11 is independent of �2. Therefore, P11(�) estimated for the fluid mixture
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is independent of �2, although �2 6= 0 is satisfied. This e↵ect is caused by the behavior of

P
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2
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2
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Coe�cient P1

1
, which is nonzero, is estimated from Eq. (403). Other coe�cients must satisfy

P
1

2
⇡ 0, P

2

1
⇡ 0, and P

2

2
⇡ 0. In addition, Eq. (403) implies that P1

1
is independent of

�2.

( c ) Percolation threshold

The percolation threshold for the fluid mixture characterized by Eqs. (392)–(395) is de-

termined as a particular state wherein the mean physical cluster size S expressed by Eq.

(371) diverges to infinity. The magnitude of P1

1
at the percolation threshold can be assessed

from formulae that are given in the appendix of this chapter (III H 4).

Substituting x
11 and Q

1

1
with those given by Eqs. (442) and (448) allows Eq. (447) to

yield an approximate formula, which does not include �1. If P1

1
at the percolation threshold

is denoted by (P1

1
)p, then the approximate formula is expressed as
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Equation (404) does not include both �1 and �2. However, the percolation threshold can

depend on �1 in the phase diagram because P
1

1
depends on �1. Then, the percolation

threshold is independent of �2, because P
1

1
is independent of �2.

( d ) Pair correlation function gij(�)

For a two-component fluid mixture specified by Eqs. (381)–(385), Eq. (372) can be sim-
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plified as
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where
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�l, (L = 2),

 1(z�) ⌘(z�)�3[1� z�/2� (1 + z�/2)e�z�],

and �0(z�) ⌘(z�)�1(1� e
�z�).

A coe�cient expressed as B(n)

i
in Eq. (405) is defined by Eq. (374); it must always be positive

because d
(n)

i
/�i should be positive for arbitrary values of i and n.

According to Eq. (374), this coe�cient should be small if the e↵ective range characterized

by 1/zn is short. In fact, Eqs. (375) and (377) for n = 2 results in

lim
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e
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= 0. (406)

Thus, the coe�cients B(2)

1
and B

(2)

2
are not included in Eq. (405). The above relation helps

derive Eq. (405) from Eq. (372). In addition, even a product z2�ez2�B
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j
has a finite value

as limz2�!1[z2�ez2�B
(2)
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] < 1, according to Eqs. (375) and (377).

186



Equation (375) for n = 1 and j = 1 results in a formula given as
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Equation (375) for n = 1 and j = 2 results in a formula given as
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gij(�) = gji(�) imposes a restriction on the coe�cients B(1)

1
and B
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Thus, the use of Eqs. (407), (408), and (409) allows coe�cients B(1)

1
and B

(1)

2
in Eq. (405)

to be assessed.

For the two-component fluid mixture specified by Eqs. (381)–(385), Equation (377) can

be simplified as
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and

e
�z2�/2

a
(2)

j

�
⇡ 0. (411)

( e ) Adequate relation between B
(1)

1
and B

(1)

2

Correlation function g12(r) should be proportional to the probability that an i = 2 particle

exists in a volume element dr2 located at a particular place specified by a distance r from an
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i = 1 particle. Hence, g12(r) should become zero, when i = 2 particles separate from a phase

in which the particles are macroscopically homogeneously mixed with i = 1 particles. Near

a specific point at which this phase separation occurs, g12(r) should extremely rapidly decay

to zero as r increases. The coe�cient B(1)

2
is an integral involving g12(r) as an integrand, as

shown in Eq. (374) with coe�cients given by Eq. (384). The coe�cient B(1)

1
is an integral

involving g11(r) as an integrand, as shown in Eq. (374) with coe�cients given by Eq. (384).

Therefore, B(1)

2
should be considerably smaller than B

(1)

1
when the phase separation of i = 2

particles occurs. Numerical pairs of B(1)

1
and B

(1)

2
that satisfy Eqs. (407)–(409) depend on a

parameter such as k given by Eq. (395). When the value of k is close to the value at which

the phase separation of i = 2 particles occurs, adequately numerical pairs of B(1)

1
and B

(1)

2

should satisfy B
(1)

2
/B

(1)

1
⌧ 1.

2. Evaluations of correlation functions

( a ) Pair connectedness evaluated from Eq. (401)

The pair connectedness P11(�) at the percolation threshold can be assessed from Eqs.

(401) and (404). For an arbitrary value of k and an arbitrary value of �1, the pair con-

nectedness P11(�) must be assessed from Eqs. (401), (403), and (404). Then, the pair

connectedness P11(�) depends on a parameter f⌫ that expresses the characteristics of the

closure represented by Eq. (312) with Eqs. (314) and (316).

When the closure represented by Eq. (312) is specified for f⌫ = 0, the closure overesti-

mates the long-range contribution of C+

11
(r) given by Eq. (308). When the closure is specified

for f⌫ = 1/2, it overestimates the decay of C+

11
(r) dependent on r. Fortunately, the values

of P11(�) assessed from Eqs. (401), (403), and (404) for f⌫ = 0 hardly di↵er from those for

f⌫ = 1/2, unless �1 or z� is too small. Therefore, the pair connectedness P11(�) derived

from the use of the closure represented by Eq. (312) can well approximate that derived from

that given by Eq. (308), unless �1 or z� is too small. When �1 or z� is too small, it is

possible to select a specific value of f⌫ as f⌫ = f⌫3/2 , which is expressed by Eq. (86). If both

Eqs. (403) and (404) are satisfied for �1 = (�1)p, kd2/� = (kd2/�)p, and z� = (z�)p, these

values correspond to the values of �1, kd2/�, and z� at the percolation threshold.

( b ) Contribution of physical clusters to phase behavior
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A physical cluster as an ensemble of particles that interact with each other in a bound

state should form a dense region of i = 1 particles. Then, there is a possibility that branches

of the physical cluster has a fractal structure because the approximate behavior of P11(r) at

a large r, where 0 < ��u11(r) ⌧ 1 is satisfied, can be expressed as P11(r) ⇠ [��u11(r)]3/2.

This structure is hardly perturbed by the addition of i = 2 particles because the added

i = 2 particles are not allowed to participate in the physical cluster formation of i = 1

particles. Further, a considerably di↵erent model from that treating physical clusters formed

by mutually attractive forces between particles was used to demonstrate that the fractal

dimensions found from the clusters aggregated in the binary mixtures can be insensitive to

molar fractions within the range of the high molar fraction.89

Unbound particles must comprise i = 1 particles with large momenta and i = 2 particles

both. With the growth of the branches of physical clusters, the branches confine unbounded

particles within regions surrounded by the branches. This is predicted based on the use of

Eqs. (401) and (403).

Values of P1

1
evaluated from Eq. (403) can satisfy 0 < P

1

1
⌧ 1 under various conditions.

This relation allows Eq. (403) to yield an approximate P
1

1
, which is given as
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Moreover, if 0 < P
1

1
⌧ 1 is considered with Eq. (412), then Eq. (401) allows an approximate

P11(�) to be obtained from the substitution of coe�cient a
1

1
that is given by Eq. (440) in

the appendix of this chapter (IIIH 4). It is expressed as
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The mean physical cluster size increases as �1 increases, and it diverges to infinity at

�1 = (�1)p, which denotes the value of �1 at the percolation threshold. If P1

1
in Eq. (412)

is substituted by (P1

1
)p obtained from Eq. (404), then conditions 0 < P

1

1
⌧ 1 and 1 ⌧ z�

allow the magnitude of (�1)p to be approximately estimated. It is expressed as

(�1)p ⇡
1

12
(z̆�)3e�z̆�[z̆�(z̆� + 1) + 1 + e

�z̆�]�1
. (414)

Although the mean physical cluster size increases as �1 increases, the pair connectedness

P11(�) hardly varies as �1 increases.52 In fact, if 0 < 24(k̆/z̆)(d̆/�)2Y
11

⌧ 1 is satisfied, then
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the numerator on the right hand side of Eq. (413) is proportional to �1. This indicates that

P11(�) is insensitive to variations in the value of �1. Therefore, each physical cluster grows

toward that with a larger span as �1 increases. Such growth of physical clusters implies that

an increase in �1 enhances the number of unbound particles confined by the branches of the

physical clusters.

Unbound i = 1 particles within regions surrounded by branches of physical clusters should

become denser than those outside of the regions, if their branches prohibit the boundaries of

the regions from expanding freely. This implies that the densities of unbound i = 1 particles

in the regions should be enhanced, and therefore, their densities outside of the regions should

be reduced. If a contribution of the latter to a decrease in g11(�) is more dominant than that

of the former to an increase in g11(�), the value of g11(�) should decrease as �1 increases.

There is a possibility that the branches of physical clusters prohibit the boundaries of the

regions from expanding freely.

Parameter f⌫ found in Eq. (413) specifies the characteristics of the closure given as Eq.

(312). The closure specified for f⌫ = 0 overestimates the long-range contribution of C+

11
(r)

given by Eq. (308), and the closure specified for f⌫ = 1/2 overestimates the decay of C+

11
(r)

dependent on r. Nevertheless, Eq. (413) shows that P11(�) cannot be insensitive to �1. This

means that the pair connectedness Pij(�) derived from the use of the closure represented by

Eq. (312) leads to the same behavior as that derived using Eq. (308). Therefore, it should

be inferred that the growth of physical clusters caused by an increase in �1 enhances the

number of unbound particles confined by the branches of the physical clusters.

( c ) Behavior of i = 2 particles

i ) Separation of rich i = 2 particle phase

The formation of physical clusters cannot directly be helped by i = 2 particles. There is

no mutually attractive force between two of the i = 2 particles, and they behave as hard cores

in the absence of an attractive force between an i = 1 particle and an i = 2 particle. Hence,

the i = 2 particles should be distributed with unbound i = 1 particles among branches of

physical clusters. The i = 2 particles can then be confined with the unbound i = 1 particles

within regions surrounded by their branches. Then, their distribution contributes to the

magnitude of Dij(r).

If a state of a fluid mixture allows physical clusters to be small and their stability to
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be low, i = 1 particles should be mixed with i = 2 particles because i = 2 particles can

be distributed with unbound i = 1 particles among small physical clusters. The separation

between i = 1 and i = 2 particle rich phases cannot occur in the fluid mixture because

physical clusters that do not have a su�cient stability allow i = 2 particles to be distributed

among branches of physical clusters. The stability of physical clusters is enhanced with an

increase in the value of (�1). Then, i = 2 particles can be stably confined among branches

of physical clusters. This implies that the number of i = 2 particles that are allowed to be

confined among branches of physical clusters is limited. Thus, stabilized physical clusters

allow the separation between i = 1 and i = 2 particle rich phases to occur.

ii ) Passively attractive force between i = 2 particles

In a fluid mixture, i = 2 particles can receive a passively attractive force generated from

the cooperation between the exclusion of i = 2 particles caused by the hard-core potential

and mutually attractive forces between i = 1 particles. Such a passively attractive force

contributes to stu�ng many i = 2 particles within a region surrounded by branches of

physical clusters. Then, i = 2 particles in the region should have larger relative momenta

than those of i = 1 particles in the region. Hence, the probability that a large number of i = 2

particles are stably retained in the region is low; the i = 2 particles can be redistributed.

A passively attractive force generated from the cooperation between the exclusion of

i = 2 particles caused by the hard-core potential and mutually attractive forces between

i = 1 particles should depend at least on both the diameter of the hard core of an i = 2

particle and the e↵ective range of the mutually attractive force between the pair particles.

Hence, particles of a constituent contributing principally to the magnitude of Dij(r) can

contribute to the phase behavior of a fluid mixture through their particle sizes. If the

particles are small, they can be confined relatively stably within regions surrounded by the

branches of physical clusters. If the particles have larger sizes than those of the regions, the

addition of these particles into the fluid mixture can more strongly disturb the stability of

the phase that seems macroscopically homogeneous.

The probability that these particles are stably retained in the regions is low if the parti-

cles interacting through only their hard-core potentials are considerably larger than regions

surrounded by branches of physical clusters. Yet, it is expected that the particles can be

di↵used into areas among the physical clusters, if the average extent of the physical clusters
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is su�ciently smaller than the sizes of the particles. When colloidal particles are considered

hard-core spheres that do not interact with each other via attractive forces, the colloidal

particles can be distributed into a molecular fluid mixture wherein the physical clusters hold

only su�ciently small extents. If the physical clusters develop near a specific temperature,

then passively attractive forces generated between colloidal particles should be strengthened.

The attractive forces may contribute to special forces that act between colloidal particles

immersed within a binary fluid mixture near the consolute point64.

3. General perception found from e↵ects of physical cluster formation

A fluid mixture comprising i = 1 particles and i = 2 particles cannot become homoge-

neous if physical clusters of i = 1 particles are formed. In a fluid mixture wherein mutually

attractive forces make particles interact with each other, particles that have small relative

momenta are prevented from being homogeneously mixed with particles that have large rel-

ative momenta. If the formation of physical clusters is ignored, the dependence of gij(r) on

r can be characterized by the product of r�1 and a particular function which can be given as

the Taylor series with respect to r. Nevertheless, particles that have small relative momenta

can contribute to physical cluster growth, which allows particles to be distributed in a a

characteristic structure. The distribution of particles allows the dependence of g(r) on r to

deviate from the behavior characterized by the product of the factor r
�1 and a particular

function that can be given as the Taylor series with respect to r.47 The distribution of par-

ticles allows the fluid system to acquire various features. Therefore, particles contributing

to the magnitude of Dij(r) are confined in local small areas surrounded by particles that

contribute to the magnitude of Pij(r).52 Particles contributing to the magnitude of Dij(r)

lead to a structure that prevents physical clusters from contracting.
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4. Appendix: Formulae for evaluating P
n

j
for specific fluid mixture

A specific fluid mixture that is specified by Eqs. (381)–(385) requires that the parameters

for estimating pair connectedness be expressed by Eqs. (392)–(395). Unknown coe�cients

P
n

j
depend on z̆n. Modifying Eq. (345) allows the dependence of Pn

j
on z̆n to be known as

P
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j
⌘ 12
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Thus, 0 < P
2

j
⌧ P

1

j
is satisfied for the specific fluid mixture because of 0 < z̆1/z̆2 ⌧ 1.

( a ) Estimations of coe�cients

i ) Estimations for large z̆2� satisfying 1 ⌧ z̆2/z̆

For the specific fluid mixture, each coe�cient xn

j
given by Eq. (348) is represented as
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Each coe�cient x
mn given by Eq. (349) is represented for the specific fluid mixture as

follows:
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Then,
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Thus,

1

x

0

@
1

x
1
j
x
22

�
1

x
2
j
x
12

�
1

x
1
j
x
21 1

x
2
j
x
11

1

A ⇡

0

@
1

x
1
j

1

x11 �
2

x
1
j

x
12

x11x22

�
⇡

3

z̆2�/z̆�

exp(z̆2�/2)

x
21

x11x22
⇡

3

(z̆2�)
2

exp(z̆2�/2)

1

x
22

1

A . (425)

Therefore, for an extremely large z̆2� satisfying 0 < z̆/z̆2 ⌧ 1, Eq. (354) yields an approxi-

mation given by
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Eq. (426) allows coe�cients an
j
given by Eq. (353) to be estimated for an extremely large

z̆2� satisfying 0 < z̆/z̆2 ⌧ 1. Then, the coe�cients are expressed as
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If Eq. (429) is used, then Eq. (396) multiplied by (z̆2�)2e�z̆2�/2 can be rewritten for n = 2

as
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Because of limz̆2�!1 a
2

j
/� < 1, Eq. (430) requires a2

j
/� ⇡ 0 to be satisfied for an extremely

large z̆2�. Then, Eq. (429) yields
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Eq. (431) requires P2

2
/P
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1
to be given as
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Moreover, Eq. (431) requires that a factor (x12
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in Eq. (427) satisfy for an extremely

large z̆2�
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Therefore, Eq. (427) can be rewritten as
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Because of Eq. (428), coe�cient a2
j
for an extremely large z̆2� is required to satisfy

a
2

j

�
⇡ 0. (435)

ii ) No attraction between particle of species 1 and that of species 2

A mutual attractive force acts between particles of species 1. No mutual attractive force

acts between a particle of species 1 and that of species 2. Moreover, no mutual attractive

force acts between particles of species 2. Then, the three types of pair connectedness are

required to satisfy P11(r) 6= 0, P12(r) = P21(r) = 0, and P22(r) = 0. Hence, Eq. (345) for

the fluid mixture specified by Eqs. (381)–(395) requires that the following four relations be

satisfied:

P
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These relations allow Eq. (434) to be simplified as
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Then, x11 given by Eq. (417) can be rewritten as
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This implies that x1

1
x
11 is independent of �2. Therefore, coe�cient a1

1
given by Eq. (440) is

independent of �2.

( b ) Requirement for percolation threshold

i ) Requirement for large z̆2� satisfying 1 ⌧ z̆2/z̆

The percolation threshold for the fluid mixture specified by Eqs. (381)–(395) is determined

by applying the requirement given by Eq. (370). For �1 = �2 = � and 1 ⌧ z̆2�, Eq. (370)
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For �1 = �2 = �, Eq. (365) can be rewritten as
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For a large z2�, Eq. (444) yields an approximate relation as

Q
2

l
⇡ �P

2

l
. (445)

If Eqs. (432) and (433) are considered with Eq. (445), then Eq. (443) multiplied by 1/�1

can be rewritten for a large z2� as

x
11

�1

+
6

⇡

⇢
Q

1

1

x
1

1

P
1

1
�

⇡

3

x
11

�1 + (P1

2
/P

1

1
)2�2

+
�2

�1


Q

1

2

x
1

1

P
1

2
�

⇡

3

x
11(P1

2
/P

1

1
)2

�1 + (P1

2
/P

1

1
)2�2

��
⇡ 0.

(446)

ii ) No attraction between particle of species 1 and that of species 2
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If Eqs. (436)–(439) are considered, then Eq. (446) can be simplified as

e
z̆�

(z̆�)3
Q

1

1
P

1

1
�

x
11

�1

⇡ 0. (447)

Then, Eq. (444) allows coe�cient Q
1

l
to be expressed as

Q
1

1
⇡ �

⇥
1� (1 + z̆�)e�z̆�

⇤
P

1

1
�

d̆

�
z̆�(z̆� + 1)e�z̆� (448)

Q
1

2
⇡ 0. (449)

In Eq. (447), x11 is given by Eq. (442). Equation (447) does not include �2, and is indepen-

dent of �2.
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IV. PHYSICAL CLUSTER FORMATION IN IONIC FLUIDS

An ensemble of charged particles distributed in an ionic fluid system includes both charged

particles that have large relative momenta and and those with small relative momenta.

Charged particles that have small relative momenta have a tendency to interact with each

other via attractive Coulomb forces in the bound states. The charged particles can actively

contribute to the formation of physical clusters. The distribution of the charged particles

is caused to become nonuniform by the attractive Coulomb forces. Then, there is a pos-

sibility that a nonuniform distribution of charged particles have a specific pattern that is

characterized as a fractal. The formation of a nonuniform distribution pattern contributes

to various features that appear for an ionic fluid system. Phase separation that occurs in

the ionic fluid system is caused by the contributions of attractive Coulomb forces between

charged particles.71

The same method used for analyzing the behavior of a multicomponent nonionic fluid

mixture system can be used to analyze the behavior of a multicomponent ionic fluid mixture

system. The equation system composed of Eqs. (270) and (272) can be employed to analyze

e↵ects of the physical cluster formation on the properties of a multicomponent ionic fluid

mixture system. The equation system are equivalent to the Ornstein–Zernike equation,

which is expressed by Eq. (271).

An attractive Coulomb force causes a charged particle to interact with another charged

particle that has a di↵erent type. A repulsive Coulomb force causes a charged particle

to interact with another charged particle of the same type. These Coulomb forces have

an extremely long-range feature. Thus, such specific features of forces that cause charged

particles to interact with other charged particles require additional ideas for analyzing the

physical cluster formation. Even in an ionic fluid mixture, physical clusters are formed

by charged particles that interact with each other in bound states that can be caused by

their small relative momenta and the attractive Coulomb forces between them. In addition,

unbound states are generated depending on their large relative momenta and depending on

repulsive Coulomb forces between them independently of their relative momenta.

The features of Coulomb forces allows characterizing the behavior of a multicomponent

ionic fluid mixture system via the physical cluster formation. However, it is possible to

identify specific behaviors that are similar to those found for multicomponent nonionic fluid
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mixture systems. Unless phase separation occurs in the multicomponent ionic fluid mixture

system, the macroscopic picture of the system allows charged particles with large relative

momenta to be homogeneously mixed with charged particles that have small relative mo-

menta. Then, these charged particles cannot be microscopically homogeneously mixed with

each other. The branches of physical clusters can confine charged particles with large rela-

tive momenta; therefore, physical cluster growth wherein charged particles that have small

relative momenta participate can a↵ect various properties of the multicomponent ionic fluid

mixture system.

A. Correlation functions for describing an L-component ionic fluid mixture

system

One of the two integral equations for analyzing an L-component ionic fluid mixture

system corresponds to Eq. (270) for the pair connectedness Pij; the other corresponds to

Eq. (272) for another correlation function Hij. Analyzing an L-component nonionic fluid

mixture system is enabled via the use of the two integral equations. For the L-component

ionic fluid mixture system, the electroneutrality is required as an additional requirement; it

causes the features of correlation functions including Pij and Hij to be di↵erent from those

for the L-component nonionic fluid mixture system. The structural features of large physical

clusters formed in ionic fluids can be understood via the long-range features of Pij(r) and

Hij(r) + 1.40,67–70

1. Requirement of Electroneutrality

( a ) Electroneutrality

Electroneutrality indicates that the whole charge of an L-component ionic fluid mixture

system is zero. This is based on the assumption that the whole system is electrically neutral.

According to the electroneutrality of an L-component ionic fluid mixture system, the nor-

malization of the pair correlation function gij(r) for macroscopic volume V requires Pij(r)
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and Dij(r) to satisfy

LX

j=1

ej⇢j

Z

V

Pij(r)dr+
LX

j=1

ej⇢j

Z

V

Dij(r)dr+ ei = 0, (450)

where ei denotes the charge of species i, and ej represents the charge of species j. Equation

(450) is used for an L-component ionic fluid mixture system, instead of Eq. (279) for an

L-component nonionic fluid mixture system.

For large r at which gij(r) � 1 ⇡ 0 is satisfied, the electroneutrality expressed by Eq.

(450) means

0 ⇡4⇡
LX

k=1

ek⇢k

Z
r+�r

0

[Pik(t) +Dik(t)]t
2dt+ ei

=4⇡
LX

k=1

ek⇢k

Z
r

0

[Pik(t) +Dik(t)]t
2dt+ ei + 4⇡

LX

k=1

ek⇢k

Z
r+�r

r

[Pik(t) +Dik(t)]t
2dt.

(451)

Then, electroneutrality requires 4⇡
PL

k=1
ek⇢k

R
r

0
[Pik(t) + Dik(t)]t2dt + ei = 0. Ultimately,

the electroneutrality requires Eq. (451) to result in a relation satisfied for for a large r. The

relation is expressed as

4⇡
LX

k=1

ek⇢kPik(r)r
2
�r ⇡ �4⇡

LX

k=1

ek⇢kDik(r)r
2
�r for 0 < �r/r ⌧ 1. (452)

( b ) Behavior of correlation functions at large r

If the value of
PL

k=1
ek⇢kPik(r) is equal to q, Eq. (452) requires

PL
k=1

ek⇢kDik(r) to

be equal to �q. This is, the absolute value of the charge carried by a group of particles

contributing to the magnitude of Pik is equal to the absolute value of the charge carried

by a group of particles contributing to the magnitude of Dik. The pair connectedness Pik

represents the contribution of particle pairs characterized as pair particles that interact

in bound states wherein the contribution of an attractive force between the pair particles

exceeds that of their relative kinetic energy; further it represents the correlation between

particles involved in the formation of physical clusters. The case that q is not zero means that

physical clusters have charges on average. However, the physical clusters should maintain

no charges on average, if an increase in the densities of particles allows physical clusters to

grow readily. Further, causing physical cluster to grow without di�culty requires that q be
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equal to zero. Therefore, Eq. (452), which represents the requirement of the electroneutrality

results in an assumption is given as

LX

k=1

ek⇢kPik(r) ⇡ 0 for 1 ⌧ r (453)

and
LX

k=1

ek⇢kDik(r) ⇡ 0 for 1 ⌧ r. (454)

When two particles located at r(i)
1

and r(j)
2

in a fluid system are widely separated, the

pair correlation function that expresses a correlation between these particles behaves2 as

gij(|r
(i)

1
� r(j)

2
|) ⇡ 1. This fact requires the physical meanings of Pij(r) and those of Dij(r)

to result in 8
><

>:

Pij(r) ⇡ 0 for 1 ⌧ r

Dij(r) ⇡ 1 for 1 ⌧ r,

(455)

because of Eq. (260). This consequence is wholly adequate if the state of an ionic fluid is

far from a state wherein the percolation of physical clusters occur in a macroscopic volume.

The relations expressed by Eq. (455) allows the assumption given by Eqs. (453) and (454)

to be satisfied for a large r without physical clusters inducing the percolation. If physical

clusters with macroscopic sizes caused by the percolation are included in an ionic fluid,

Pij(r) 6= 0 and Dij(r) 6= 1 can be satisfied for a large r despite Pij(r) +Dij(r) ⇡ 1. Yet, the

assumption given as Eqs. (453) and (454) is satisfied at a large r if each physical cluster is

electrically neutral.

If the growth of large charged physical clusters allows the percolation of the physical

clusters to occur in a macroscopic volume, it is possible to assume

8
><

>:

PL
k=1

ek⇢kPik(r) 6= 0

PL
k=1

ek⇢kHik(r) 6= 0.

Even if it is possible, the electrical repulsion allows charged physical clusters to be expanded.

The electrical repulsion requires the charged physical clusters to be unstable, and therefore,

it should be reasonable to assume Eqs. (453) and (454).
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2. Features of correlation functions for multicomponent ionic fluid mixture

system

( a ) System without percolation of physical clusters

The mean size S of physical clusters estimated by Eq. (281) should be su�ciently inde-

pendent of V , if the percolation of physical clusters does not occur in macroscopic V found

in an L-component ionic fluid mixture system. In the limit V ! 1, the independence of S

from V allows Eq. (281) to result in
8
><

>:

limV!1[(S � 1)/V ]
PL

k=1
⇢k = 0

limV!1(1/V )
R
V
Pij(r)dr = 0.

This corresponds to Eq. (282).

In the limit V ! 1, Eq. (282) requires Eq. (450) to result in the normalization condition

for Dij. It is given as

LX

j=1

ej⇢j

Z

V

Dij(r)dr = �ei. (456)

Instead of Eq. (283), Eq. (456) must be applied for the L-component ionic fluid mixture

system.

( b ) System involving percolation of physical clusters

If the percolation of physical clusters occurs in macroscopic V found in an ionic fluid

system, S estimated for the ionic fluid system by Eq. (281) should be dependent on V .

Then, [(S � 1)/V ]
PL

k=1
⇢k 6= 0 should be satisfied. If a state of the ionic fluid is in the

immediate vicinity of a liquid-solid transition point where 0 < ⇢
sd

i
� ⇢

lq

i
⌧ 1 (⇢sd

i
denotes ⇢i

in a solid state, and ⇢
lq

i
denotes ⇢i in a liquid state which can be transformed into the solid

state) is satisfied, the dependence of S on V can be estimated as

S/V ⇡

LX

i=1

⇢
sd

i

which corresponds to a state wherein the growth of physical clusters reaches the limit. Then,

Eq. (281) should result in

(1/V )
LX

i=1

LX

j=1

⇢i⇢j

Z

V

Pij(r)dr ⇡
LX

i=1

⇢
sd

i

LX

k=1

⇢k.
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This consequence requires (1/V )
R
V
Pij(r)dr ⇡ 1 to be satisfied in the limit V ! 1. There-

fore, it requires Eq. (450) to result in
8
><

>:

(1/V )
R
V
Dij(r)dr ⇡ 0

PL
j=1

ej⇢j

R
V
Pij(r)dr = �ei.

A state specified by (1/V )
R
V
Dij(r)dr ⇡ 0 should considerably lack particle pairs charac-

terized as an ensemble of pair particles interacting in unbound states wherein a contribution

of the relative kinetic energy of the pair particles exceeds a contribution of an attractive

force between them. The lack of the particle pairs allows a feature found as a liquid to

be lost from the ionic fluid system. The growth of physical clusters must allow the phase

transition from the liquid state of an ionic fluid to the solid state.
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B. Various phenomena depending on physical cluster formation in ionic fluids

( a ) Physical clusters of charged particles formed in ionic fluids

The Coulomb force, which is an extremely long-range attractive force between positive

and negative charged particles, can e�ciently contribute to enhancing density fluctuations

in an ionic fluid system. It has the capability to make the distribution of charged parti-

cles become nonuniform. The nonuniform distribution of charged particles developed by

attractive Coulomb forces among them allow phase separation to occur in the ionic fluid

system.71

In an ionic fluid system, charged particles with small relative momenta are distributed

with those that have large relative momenta. The charged particles with small relative

momenta can contribute to physical cluster formation because their small relative momenta

enhance the possibility that the contribution of the attractive Coulomb force between a

positively charged particle and a negatively charged particle exceed the contribution of their

relative kinetic energy.

The Bjerrum theory based on the ion pair model76 can allow a discussion of the critical

thermodynamics of an ionic fluid to result in a satisfactory description for the ionic fluid.18

However, the ionic cluster model beyond the ion pair model based on the Bjerrum theory

need to allow the thermodynamics of ionic fluids to be estimated more precisely.50,51 Several

features of the ionic fluid should be caused by the cooperating e↵ect of many charged parti-

cles. Hence, it is significant to consider the fact that the distribution of charged particles in

an ionic fluid have the strong tendency to become nonuniform. The precise estimate of the

thermodynamics of ionic fluids51 indicates that an ionic cluster model beyond the ion pair

model need to be considered.75

A numerical calculation allows the estimation of the mean size of ionic clusters formed

in an ionic fluid.79 The physical clusters, which can be easily formed by charged particles

with small relative momenta, can grow as the densities of the charged particles increase.

If the physical clusters reaches extremely large sizes, then the features of an ionic fluid are

influenced by the physical clusters.77,78 Large physical clusters of charged particles formed in

an ionic fluid influence the viscosity of the ionic fluid. A viscosity anomaly is detected near

the critical consolute point of an ionic ethylammonium nitrate-n-octanol mixture.77 This is

evidence of the formation of large physical clusters.
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( b ) Electrical conductivity in ionic fluid

If pair-charged particles interact with each other in the bound state, they cannot freely

migrate away from each other even when an external electric field is applied. If the free

charged particles that can freely migrate decrease in an ionic fluid despite the increase in

the densities of the charged particles, the contribution of the free charged particles to the

electrical conductivity will decrease. An increase in the densities of charged particles can

make the physical clusters of charged particles grow via the process of cluster–cluster ag-

gregation in the ionic fluid. If physical clusters of charged particles percolate,80 physical

clusters that have macroscopic sizes can e↵ectively contribute to the electrical transport

as paths for the electric current. The contribution of the physical clusters to the electric

current can be generated by only a small shift in each charged particle caused by the ex-

ternal electric field. As the densities of charged particles increase, the percolation state is

developed, and the electrical conductivity should be enhanced. As the densities of charged

particles increase from a su�ciently low level, the electrical conductivity of an ionic fluid

can decrease; after reaching a minimum, the electrical conductivity can increase. This be-

havior of electrical conductivity can be experimentally demonstrated.78 The behavior of the

electrical conductivity can become evidence of the formation of physical clusters that have

macroscopic sizes.

1. Fractal structures of physical clusters formed in ionic fluids

( a ) Estimates of pair correlation functions

The feature of an attractive Coulomb force via which a positively charged particle and neg-

atively charged particle e↵ectively interact with each other can di↵er depending on whether

charged particles are distributed near the two charged particles. Within an ionic fluid sys-

tem, a feature of the e↵ective interaction between two charged particles surrounded by other

charged particles is assumed to have a shorter range than that without contributions from

other charged particles.

A pair correlation function exhibits the possibility that pair-charged particles are located

at a specific configuration in an ionic fluid, and it involves contributions from charged par-

ticles distributed near the pair-charged particles. The estimate of pair correlation functions
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can aid in examining the e↵ects of the contributions of charged particles distributed near

particular pair-charged particles in an ionic fluid; further, it can aid in examining specific

configurations of charged particles on a large extent scale.67–70,80 The magnitude of a pair

correlation function is decreased with the increase in a large distance r between specific

pair-charged particles. Under several conditions, the long-range features of pair correlation

functions can be expressed as the product of r�1 and a particular function expressed by a

Taylor series with respect to r.15,16

( b ) Fractal structures of physical clusters

If the developed physical clusters of charged particles are formed in an ionic fluid, then

there is a possibility that the structure of each physical cluster has a specific pattern char-

acterized as a fractal. The formation of physical clusters with a fractal structure causes

the dependence of a pair correlation function on r to deviate from that expressed as the

product of r�1 and a particular function expressed by a Taylor series with respect to r.

This is implied from examples in ionic fluid systems wherein charged colloidal particles are

suspended.

In ionic fluid systems wherein charged colloidal particles are suspended, charged colloidal

particles are not distributed homogeneously.67–70 Electrostatic interactions between charged

colloidal particles cause their nonuniform distributions to occur. According to numerical

simulations, nonuniform distributions of charged particles have fractal structures.72 The

fractal structures depend on the densities of charged colloidal particles.73 According to the

experiments for ionic fluids wherein charged colloidal particles are suspended, the nonuniform

distributions of charged colloidal particles have various fractal structures.74 Further, the

growth of physical clusters of charged colloidal particles can induce gelation with a fractal

structure.70

The growth process of physical clusters caused by the contact of small physical clusters

corresponds to a growth process known as cluster–cluster aggregation that results in the

fractal structure with the fractal dimension df determined as df ⇠ 1.75.40 This fact and the

numerical simulations72 support the possibility that a nonuniform distribution of charged

colloidal particles in a suspension has a fractal structure with the fractal dimension df

expressed as df < 2.67–70. Hence, a nonuniform distribution of charged particles, which

can considerably a↵ect the properties of an ionic fluid, should have a particular structure
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characterized by pair correlation functions involving a contribution of the factor rdf�3 (df <

2).40,72

2. Correlation functions for examining e↵ects of physical cluster formation

Attractive Coulomb forces via which charged particles comprising an ionic fluid system

interact with each other, allow the distribution of charged particles to become inhomoge-

neous. Charged particle pairs contributing to the magnitude of the pair connectedness Pij

belong to a group of charged particle pairs characterized by particles that have small rel-

ative momenta. Then, charged particles forming each pair interact in bound states where

the contribution of an attractive Coulomb force between the pair charged particles exceeds

the contribution of their relative kinetic energy. Charged particle pairs contributing to the

magnitude of Dij belong to the other group of particle pairs characterized by particles that

have large relative momenta. Then, the charged particles that form each pair interact with

each other in unbound states where the contribution of the relative kinetic energy of the pair

charged particles exceeds the contribution of the attractive Coulomb force between them.

The attractive Coulomb forces cannot allow charged particles belonging to the former group

to be homogeneously mixed with those belonging to the latter group. Charged particles con-

tributing to the magnitude of Dij have a tendency to be confined in local areas surrounded

by charged particles contributing to the magnitude of Pij.49,80

Equation (453) indicates that the electroneutrality is maintained for each physical cluster

of charged particles. Electroneutrality enables each physical cluster to grow toward macro-

scopic sizes. According to the above examples of charged colloidal particles, each physical

cluster of charged particles formed in an ionic fluid can have a fractal structure. Then, the

dependence of a pair correlation function on r deviates from a form expressed as the product

of r�1 and a particular function given as a Taylor series with respect to r.

The pair correlation function gij related to a charged particle of species i and another

charged particle of species j is equivalent to the sum of the pair connectedness Pij and

another correlation function Dij. The structure of each physical cluster of charged particles

is characterized by Pij. The dependence of Pij on r should not have a form expressed as

the product of r�1 and a particular function given as a Taylor series with respect to r,

according to an example found from analyzing a non-ionic fluid.47 A consequence obtained
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from analyzing ionic fluids demonstrates that the dependence of Pij on r does not have the

form.49 A di↵erential equation for Pij can be derived from the integral equation expressed

by Eq. (270) being relevant to Pij. The di↵erential equation corresponds to Eq. (154)

for a single-component fluid. The pair connectedness Pij obtained as a solution from the

di↵erential equation has a specific form that is di↵erent from that expressed as the product

of r�1 and a particular function given as a Taylor series with respect to r.
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C. Closure schemes for two integral equations

1. Approximate features of correlation functions due to ionic fluid mixture

( a ) Behavior of C+

ij
(r) for �uij < 0 in L-component ionic fluid mixture system

The behavior of C+

ij
(r) at 1 ⌧ r/�ij in an L-component ionic fluid mixture system is

equivalent to that expressed by Eq. (294) if �uij < 0. Thus, the behavior of C+

ij
(r) caused

by �uij < 0 allows a closure scheme for solving the integral equation given by Eq. (270) to

be given by Eqs. (299) and (300). The closure scheme for solving the integral equation for

the L-component ionic fluid mixture system is given as

C
+

ij
(r) = C

0+

ij
(r) +

4

3
p
⇡
[��uij(r)]

3/2
, for �uij < 0,

and

C
0+

ij
(r) = 0, for r > �ij.

( b ) Behavior of C+

il
(r) for �uil > 0 and 1 ⌧ r/�il

i ) Behavior of C+

il
(r) in L-component ionic fluid mixture system

For �uil > 0, Pil(r) is equal to zero unless the contributions of both �uil > 0 and

�ujl > 0 coexist at a large r. In an ionic fluid mixture system, a j particle that attracts

both i and l particles by the Coulomb force coexists. Thus, Pil(r) 6= 0 occurs for �uil > 0.

A physical cluster can grow via a particle corresponding to the j particle that satisfies

�uij(r) < 0 (i 6= j) and �ujl(r) < 0 (j 6= l). When the distance r between i and l is

su�ciently large, Eq. (290) can be approximated as

�uil

h
Pil(r)� C

+

il
(r)

i
+ C

+

il
(r) ⇡ 0, for �uil(r) > 0.

For 1 ⌧ r/�il, this relation must be satisfied. Then, the dependence of �uilPil(r) on r

should be the same as that of �C
+

il
(r) on r. Thus, an approximate formula for 1 ⌧ r/�il

can be simplified as

�uilPil(r) ⇡ �C
+

il
(r), for �uil(r) > 0. (457)
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By substituting Eq. (457) into Eq. (453), the behavior of C+

il
(r) caused by the Coulomb

potential that satisfies �uil > 0 is estimated as

X

l

for uil>0

el⇢l

�uil(r)
C

+

il
(r) ⇡

X

k

for uik<0

ek⇢kPik(r), for r/�il � 1. (458)

According to Eq. (296), a long-range contribution to Pij(r) should be expressed as Pij(r) ⇡

[22/(15
p
⇡)][��uij(r)]3/2 for �uij < 0. The use of this long- range contribution allows Eq.

(458) to be rewritten as

X

l

for uil>0

el⇢l

�uil(r)
C

+

il
(r) ⇡

X

k

for uik<0

ek⇢k
22

15
p
⇡
[��uik(r)]

3/2
, for r/�il � 1. (459)

Therefore, this result and analogy with the MSA should allow the behavior of C+

il
(r) to be

approximately expressed as

X

l

as uil>0

el⇢l

�uil(r)

h
C

+

il
(r)� C

0+

il
(r)

i
=

X

k

as uik<0

ek⇢k
22

15
p
⇡
[��uik(r)]

3/2
, (460)

and

C
0+

il
(r) = 0, for r > �il. (461)

If the Heaviside step function ✓(x) = 0 (x < 0), 1 (x > 0) is used, Eq. (460) can be rewritten

as a specific form that can be mathematically readily treated, i.e.,

LX

l=1

el⇢l

�uil(r)
✓ [�uil(r)]

h
C

+

il
(r)� C

0+

il
(r)

i

=
LX

k=1

ek⇢k
22

15
p
⇡
{1� ✓ [�uik(r)]} [��uik(r)]

3/2
. (462)

ii ) Behavior of C+

il
(r) in two-component ionic fluid mixture system

If an ionic fluid is a two-component mixture (L = 2), ej⇢j/(ei⇢i) = �1 (i 6= j) is satisfied.

Then, Eq. (460) is simplified as

C
+

ii
(r) = C

0+

ii
(r)�

22

15
p
⇡
�uii(r)[��uij(r)]

3/2
, for �uij < 0, (463)

and

C
0+

ii
(r) = 0, for r > �ii. (464)
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If this expression for C+

ii
(r) is a closure scheme for the integral equation given by Eq. (270),

the closure scheme allows Eq. (270) to be readily solved.

Moreover, for L = 2, Eqs. (299) and (463) allow the long-range contribution to C
+

ij
(r) to

be expressed as

C
+

ij
(r) ⇡ K

+

ij

1

r5/2�|i�j| for r/�ij � 1 (i = 1, 2; j = 1, 2), (465)

where

K
+

ij
⌘

1
p
⇡

✓
4

3

◆|i�j|✓
�
22

15

�eiei

4⇡✏

◆1�|i�j|✓
��eieµi

4⇡✏

◆3/2

, (µi = 22�i). (466)

Here, ✏ denotes the macroscopic dielectric constant of the medium wherein charged particles

are distributed. Equation (465) is applicable to both the case of �uij < 0 and the case of

�uij > 0.

( c ) Behavior of C⇤
ij
for 1 ⌧ r/�ij in L-component ionic fluid mixture system

Features of C
⇤
ij
(r) in the case of uij < 0 (i 6= j) is caused by the contribution of

the group of charged particles characterized as each pair of charged particles interacting

with each other in unbound states wherein the contribution of their relative kinetic energy

exceeds the contribution of the attractive Coulomb force between them. Further, features of

C
⇤
ij
(r) in the case of 0  uij is caused by the contribution of the group of charged particles

characterized as each pair of charged particles interacting with each other via the repulsive

Coulomb force between them. Then, the behavior of C⇤
ij
(r) can be simply estimated for a

large r.

According to Eq. (297), Dij(r)�1 ⇡ �(1/2)�uij(r) is satisfied for 1 ⌧ r/�ij in two cases,

i.e., 0  uij and uij < 0. Further, according to Eq. (298), C⇤
ij
(r) ⇡ ��uij(r) is satisfied

for 1 ⌧ r/�ij in the two cases, i.e., 0  uij and uij < 0. Thus, Eq. (298) represents the

long-range contribution of C⇤
ij
(r) for an L-component ionic fluid mixture system in the two

cases specified by �uij < 0 and �uij > 0.

An integral equation for Hij(r) applied to the L-component ionic fluid mixture system is

equivalent to Eq. (272) derived for an L-component nonionic fluid mixture system. Accord-

ing to the above discussion, an analogy with the MSA allows Eq. (302) to become a closure

scheme for solving the integral equation when �uij < 0 and �uij > 0. Thus, the closure

212



scheme is expressed as

C
⇤
ij
(r) = C

0⇤
ij
(r)� �uij(r), for �uij < 0 and �uij > 0, (467)

where

C
0⇤
ij
(r) = 0, for r > �ij. (468)

Then, the long-range contribution to C
⇤
ij
(r) in terms of ��uij(r) can be expressed as

C
⇤
ij
(r) ⇡ K

⇤
ij

1

r
for r/�ij � 1, (469)

where

K
⇤
ij
⌘ �

�eiej

4⇡✏
. (470)

Moreover, relations formed by Eqs. (299), (300), (460), (461), (467), and (468) can be

consistent with the MSA because cij = C
+

ij
+C

⇤
ij
given in Eq. (269) behaves as cij ⇡ C

⇤
ij
for

a large r.

2. Expression of practical closure schemes similar to MSA

( a ) Closure scheme for solving Ornstein–Zernike equation in L-component ionic fluid

mixture system

To avoid a mathematical di�culty caused by  = 0, the contribution of the Coulomb

potential to the closure scheme is regarded as a Yukawa potential type that have the e↵ective

range expressed by 0 < 
�1

< 1 although 
�1 is su�ciently large.82 Then, the MSA allows

a closure scheme for solving the Ornstein–Zernike equation to be given as
8
><

>:

cij(r) = c
0

ij
(r) +Kije

�r
/r, for 0   ⌧ 1

c
0

ij
(r) = 0, for r/�ij > 1,

(471)

where
8
>>>><

>>>>:

Kij ⌘ �Kij

�Kij ⌘ �(↵2

0
/4⇡)(ei/e0)(ej/e0)

↵
2

0
⌘ �e

2

0
/✏.

(472)
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Here, e0 represents the elementary charge and Kij is equivalent to K
⇤
ij
.

( b ) Closure scheme for solving Eq. (270) in two-component ionic fluid mixture system

i ) Closure scheme for solving Eq. (270)

Equation (471) requires the long-range contribution expressed by Eq. (465) to involve a

factor e�r. Thus, the closure scheme given for the Ornstein–Zernike equation as Eq. (471)

requires a closure scheme for solving the integral equation given by Eq. (270) to be given as

C
+

ij
(r) = C

0+

ij
(r) +K

+

ij

✓
e
�r

r

◆5/2�|i�j|

, (i = 1, 2; j = 1, 2), (473)

where

C
0+

ij
(r) = 0, for r > �ij. (474)

Instead of using the long-range contribution expressed by Eq. (465), a long-range contribu-

tion involving a factor e�r is applied to the closure scheme for solving Eq. (270).

ii ) Practical closure scheme for solving Eq. (270)

An approximate expression for the factor (1/r)n̂/2 (n̂ = 3, 5) in Eq. (473) can be given by

Eq. (83). The approximate expression enables mathematical di�culty caused by (1/r)n̂/2

to be avoided when solving Eq. (270) analytically. According to Eq. (83), the approximate

expression is given as

1

rn̂/2
⇡ (�ij)

�n̂/2+1 exp[f⌫ ] exp[�(f⌫/�ij)r]
1

r
, n̂ ⌘ 2n+ 1, (n = 1, 2). (475)

In this expression, the value of f⌫ should satisfy 0 < f⌫  1/2. Despite this, Eq. (84) allows

the value of f⌫ to be reasonably determined. Thus, Eq. (85) allows its value for n̂ = 3 to be

expressed as f⌫ ⇡ f⌫3/2 , which is given by f⌫3/2 = 0.1018532115. Similarly, Eq. (85) allows

its value for n̂ = 5 to be expressed as f⌫ ⇡ f⌫5/2 , which is given by f⌫5/2 = 0.8457924344.

The approximate expression of Eq. (475) depends on diameters of hard cores of particles.

If an approximate relation between �(r) = 1/rn̂/2 and �(r) = ⇣zne
�↵znr/r with two unknown

coe�cients (⇣zn and ↵zn) is formed independently of diameters of hard cores of particles,

then it is easy to proceed to calculate for considering a condition 0 < �ij ⌧ 1. Hence, the

two unknown coe�cients ⇣zn and ↵zn are determined using the following relation:

(1) �(r1) = �(r1) and �(r2) = �(r2) for r1 < r2,
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(2) assumption: r2 = 1/zn (n = 1, 2) with zn = n̂/2 (n̂ ⌘ 2n+ 1),

(3) I(⌘̂r1) = I(⌘̂r1) (0 < ⌘̂ < 1) with I(⌘̂r1) ⌘
R1
⌘̂r1

�(r)dr and I(⌘̂r1) ⌘
R1
⌘̂r1

�(r)dr.

The above relations allows the following formulae to be obtained:

0 = �1 + (n̂/2� 1)⌘̂n̂/2�1(znr1)
znr1(n̂/2�1)/(znr1�1)Ei


�⌘̂znr1

n̂/2� 1

znr1 � 1
ln(znr1)

�
,(476)

↵zn = zn
n̂/2� 1

znr1 � 1
ln(znr1), (477)

⇣zn = (zn)
n̂/2�1 exp

✓
↵zn

zn

◆
. (478)

If n̂, ⌘̂, and zn are given, then r1, ↵zn , and ⇣zn are assessed from the above formulae. When

zn is required to su�ciently approach zero, ↵zn given by Eq. (477) approaches zero, i.e.,

lim!0 ↵zn = 0.

Thus, a practical closure scheme is given as
8
><

>:

C
+

ij
(r) = C

0+

ij
(r) +

P
2

n=1
K

n

ij
exp(�z̆nr)/r, (i = 1, 2; j = 1, 2),

C
0+

ij
(r) = 0 (r/�ij > 1),

(479)

where

K
1

ij
⌘

4

3
p
⇡
(�Kij)

3/2
⇣z1 , (i 6= j) (480)

K
2

ij
⌘ 0, (i 6= j) (481)

K
1

ii
⌘ 0, (482)

K
2

ii
⌘

22

15
p
⇡
(�Kii)(�Kij)

3/2
⇣z2 , (i 6= j) (483)

�Kij = �Kji, (484)

and

z̆1 ⌘ (3/2)+ ↵z1 , (lim
!0

↵z1 = 0) (485)

z̆2 ⌘ (5/2)+ ↵z2 , (lim
!0

↵z2 = 0). (486)

( c ) Closure scheme for solving Eq. (272) in L-component ionic fluid mixture system

Equation (471) requires the long-range contribution expressed by Eq. (469) to involve a

factor e�r. Thus, the closure scheme given for the Ornstein–Zernike equation as Eq. (471)

requires a closure scheme for solving the integral equation given by Eq. (272) to be given as

C
⇤
ij
(r) = C

0⇤
ij
(r) +K

⇤
ij

e
�r

r
, (487)
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where

C
0⇤
ij
(r) = 0, for r > �ij. (488)

The closure scheme given by Eq. (487) is applicable both when �uij < 0 and when �uij > 0.

3. Solution of integral equation

Equation (270) and the practical closure scheme given by Eq. (479) result in an integral

equation that can be solved analytically. If the consequences given by Eqs. (320)�(343) are

used, a solution for the integral equation can be summarized as

2X

k=1

eQ+(�1)

ki
(�k) eQ+

jk
(�k) = �ij, �ii = 1; �ij = 0 (i 6= j), (489)

eQ+

ij
(k)⌘ �ij � (⇢i⇢j)

1/2 bQ+

ij
(�ik), (490)

bQ+

ij
(ik)⌘

Z 1

�ji

e
�ikr

0
Q

+

ij
(r0)dr0, (491)

Q
+

ij
(r0)= Q

+0

ij
(r0) +

2X

n=1

D
n

ij
e
�z̆nr

0
, (�ji < r

0
< �ji), (492)

Q
+

ij
(r0)=

2X

n=1

D
n

ij
e
�z̆nr

0
, (�ji  r

0), (493)

Q
+0

ij
(r0)= 0, (�ji  r

0), (494)

bQ+

ij
(ik)=

2X

m=1


C

m

ij
e
�ik�jie

�z̆m�ji

⇣
e
z̆m�j � e

�ik�j

ik + z̆m
�

1� e
�ik�j

ik

⌘

+
1

ik + z̆m
D

m

ij
e
�z̆m�jie

�ik�ji

�
, (495)

C
n

ij
⌘ �D

n

ij
+ 2⇡

2X

k=1

(⇢k/z̆n) bPik(z̆n)D
n

kj
, (496)

bPij(z̆n)⌘

Z 1

0

Pij(t)e
�z̆nttdt. (497)

Here, �ji ⌘
1

2
(�j � �i) and �ji ⌘

1

2
(�j + �i).
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Two relations need between bPij(z̆n) and D
n

ij
; one is given as

2⇡ bPij(z̆n) =
2X

m=1

z̆m

z̆n + z̆m
e
�(z̆n+z̆m)�ij

✓
D

m

ij
� 2⇡

2X

k=1

⇢k

z̆m

bPik(z̆m)D
m

kj

◆

+2⇡
2X

k=1

⇢k
bPik(z̆n)e

�z̆n�jk

2X

m=1

⇢
e
�z̆m�jkD

m

kj

⇣
e
�z̆n�k

z̆n + z̆m
+

1� e
�z̆n�k

z̆n

⌘

+
2X

l=1

2⇡⇢l
z̆m

bPkl(z̆m)D
m

lj


e
�z̆m�jk

z̆n + z̆m
� e

�z̆m�jk

⇣
e
�z̆n�k

z̆n + z̆m
+

1� e
�z̆n�k

z̆n

⌘��
. (498)

The other is given as

2⇡Kn

ij
= z̆nD

n

ij
�

2X

m=1

2X

k=1

⇢kD
n

ik
D

m

jk
⇣
nm

kj
�

2X

m=1

2X

k=1

2X

l=1

⇢kD
n

ik
D

m

lk

2⇡⇢l
zm

bPjl(z̆m)⇠
nm

kj
, (499)

where
8
><

>:

⇣
nm

kj
⌘ e

�z̆n�kje
�z̆m�kj(z̆n + z̆m � z̆me

�z̆n�j)(z̆n + z̆m)�1

⇠
nm

kj
⌘ e

�z̆n�kje
�z̆m�kj(�z̆n � z̆m + z̆me

�z̆n�j + z̆ne
z̆m�j)(z̆n + z̆m)�1

.

(500)

Modifying Eq. (499) allows bPij(z̆n) to be given as

2⇡⇢i bPji(z̆n) =
2X

m0=1

z̆m0⇠
nm

0
(�1)

jj

z̆n

⇢j
D

n(�1)

ji

�

2X

m=1

2X

m0=1

2X

h=1

z̆nD
n(�1)

hi
D

m

hj
⇠
nm

0
(�1)

hj
⇣
m

0
m

hj

� 2⇡
2X

m0=1

2X

h=1

2X

k=1

z̆n

⇢h
D

n(�1)

hi
⇠
nm

0
(�1)

hj
D

m
0
(�1)

hk
K

m
0

kj
, (501)

where
8
><

>:

P
2

m0=1
⇠
nm

0
(�1)

ij
⇠
m

0
m

ij
= �nm

P
2

k=1
D

n(�1)

ik
D

n

kj
= �ij.

(502)
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D. Ionic fluid structures characterized by formation of large physical clusters

If an ionic fluid mixture system includes extremely large physical clusters, Pij(r) should

have a long-range feature on a macroscopic scale even if C
+

ij
(r) retains the microscopic

feature. The recursive solution given by Eq. (304) clearly denotes that particles (k1, k2, · · · )

distributed around an i particle and a j particle enable the correlation function Pij(r) to

decay to zero considerably slower than C
+

ij
(r) decays. Further, C+

ij
(r) can decay to zero

more rapidly than ��uij(r), which expresses a microscopic feature. If the contributions of

particles (k1, k2, · · · ) distributed around the particles of species i and j are not negligible,

Eq. (304) demonstrates that Pij(r) can retain a finite positive value except zero even out of

the e↵ective range where C
+

ij
(r) 6= 0.

Convolution integrals found in the recursive solution given by Eq. (306) allow a feature

of Hij(r) to remain in a longer range than both that of C⇤
ij
(r) and that of cij(r). Eq. (306)

denotes that particles (k1, k2, · · · ) distributed around the particles of species i and j enable

the absolute value |Hij(r)| to decay to zero considerably slower than |C
⇤
ij
(r)| and |cij(r)|

decay.

The ranges within which the correlation functions cij(r), C
+

ij
(r) and C

⇤
ij
(r) retain e↵ective

values di↵erent from zero, can remain microscopic sizes in comparison with other correlation

functions such as gij(r)� 1, Hij(r), and Pij(r). The known assumption that the feature of

cij(r) is retained in the short range13,18 restricts the features of C+

ij
(r) and C

⇤
ij
(r). Thus,

the features of cij(r), C
+

ij
(r), and C

⇤
ij
(r) allow Pij(r) and Hij(r) in the convolution integrals

found in Eqs. (270) and (272) to be approximated using the Maclaurin series expansions.

1. Maclaurin series expansions

( a ) Maclaurin series expansion of convolution integrals in Eqs. (270)

If a polar coordinate system with the origin located at r(i)
1

and a point r(j)
2

located on the

z
(k) axis is applied, Eq. (270) can be rewritten as

P(r) = C
+(r) +

LX

k=1

⇢k

Z 1

0

Z
⇡

0

C
+

ik
(r(k)

3
)Pkj(|r

(k)

3
� r(j)

2
|)2⇡(r(k)

3
)2 sin ✓(k)

3
dr(k)

3
d✓(k)

3
,

(503)

where r ⌘ |r(i)
1

� r(j)
2
| = |r(j)

2
|, r(k)

3
⌘ |r(i)

1
� r(k)

3
| = |r(k)

3
|, and ✓

(k)

3
= cos�1[r(j)

2
· r(k)

3
/(rr(k)

3
)].
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In Eq. (503), the short-range feature of C+

ik
(r(k)

3
) allows 0 < r

(k)

3
/r ⌧ 1 to be maintained for

large r. Thus, a Maclaurin series expansion for P(|r(k)
3

� r(j)
2
|) found in Eq. (503) is e↵ective

for representing the behavior of Pij(r) at large r.

Then, the Maclaurin series expansion corresponds to

P(|r(k)
3

� r(j)
2
|) =

1X

m=0

1

m!

@
m

@(r(k)
3

)m
P(r(k)

32
)

����
r
(k)
3 =0

(r(k)
3

)m, (504)

where

r
(k)

32
⌘ |r(k)

3
� r(j)

2
| = r

h
(r(k)

3
/r)2 � 2(r(k)

3
/r) cos ✓(k)

3
+ 1

i1/2
.

The substitution of the Maclaurin series expansion given by Eq. (504) allows Eqs. (503) to

be given as

Pij(r) =C
+

ij
(r) +

LX

k=1

⇢k

Z

V

C
+

ik
(|r(k)

3
|)Pkj(r)dr

(k)

3
+

1

6

LX

k=1

⇢k

Z

V

C
+

ik
(|r(k)

3
|)|r(k)

3
|
2
r

2
Pkj(r)dr

(k)

3

+
9

4 · 62

LX

k=1

⇢k

Z

V

C
+

ik
(|r(k)

3
|)|r(k)

3
|
4�rPkj(r)dr

(k)

3
+ · · · , (505)

where

�r ⌘
8

15

1

r

@
3

@r3
+

2

15

@
4

@r4
.

If the formula defined by Eq. (116) is used as the forms of coe�cients, Eq. (505) is simplified

as

LX

k=1


�ik � ⇢k

bC+(0)

ik

�
Pkj(r) = C

+

ij
(r)+

LX

k=1

⇢k
bC+(2)

ik
r

2
Pkj(r)

+
9

4

LX

k=1

⇢k
bC+(4)

ik
�rPkj(r) + · · · , (506)

The formula defined by Eq. (116) is expressed as bC+(↵)

ik
(↵ = 0, 2, 4), and it is given as

bC+(↵)

ik
=

✓
1

6

◆↵/2 Z

V

C
+

ik
(|r(k)

3
|)|r(k)

3
|
↵dr(k)

3
, (↵ = 0, 2, 4). (507)

In Eq. (506), the factor 9

4

PL
k=1

⇢k
bC+(4)

ik
�rPkj(r) corresponds to a correction term under the

condition that the value of r is not large although its value is out of the microscopic range

in which C
+(r)ik 6= 0 is satisfied.
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( b ) Maclaurin series expansion of convolution integrals in Eq. (272)

If a polar coordinate system with the origin located at r(i)
1

and a point r(j)
2

located on the

z
(k) axis is applied, Eq. (272) can be rewritten as

Hij(r) =C
⇤
ij
(r) +

LX

k=1

⇢k

Z 1

0

Z
⇡

0

C
⇤
ik
(r(k)

3
)Pkj(|r

(k)

3
� r(j)

2
|)2⇡(r(k)

3
)2 sin ✓(k)

3
dr(k)

3
d✓(k)

3

+
LX

k=1

⇢k

Z 1

0

Z
⇡

0

C
+

ik
(r(k)

3
)H(|r(k)

3
� r(j)

2
|)2⇡(r(k)

3
)2 sin ✓(k)

3
dr(k)

3
d✓(k)

3

+
LX

k=1

⇢k

Z 1

0

Z
⇡

0

C
⇤
ik
(r(k)

3
)H(|r(k)

3
� r(j)

2
|)2⇡(r(k)

3
)2 sin ✓(k)

3
dr(k)

3
d✓(k)

3
, (508)

A Maclaurin series expansion for H(|r(k)
3

� r(j)
2
|) corresponds to

H(|r(k)
3

� r(j)
2
|) =

1X

m=0

1

m!

@
m

@(r(k)
3

)m
H(r(k)

32
)
���
r
(k)
3 =0

(r(k)
3

)m. (509)

The substitution of the Maclaurin series expansions given by Eqs. (504) and (509) allows

Eqs. (508) to be given as

Hij(r) =C
⇤
ij
(r) +

LX

k=1

⇢k

Z

V

C
⇤
ik
(|r(k)

3
|)Pkj(r)dr

(k)

3
+

1

6

LX

k=1

⇢k

Z

V

C
⇤
ik
(|r(k)

3
|)|r(k)

3
|
2
r

2
Pkj(r)dr

(k)

3

+
9

4 · 62

LX

k=1

⇢k

Z

V

C
⇤
ik
(|r(k)

3
|)|r(k)

3
|
4�rPkj(r)dr

(k)

3
+ · · ·

+
LX

k=1

⇢k

Z

V

cik(|r
(k)

3
|)Hkj(r)dr

(k)

3
+

1

6

LX

k=1

⇢k

Z

V

cik(|r
(k)

3
|)|r(k)

3
|
2
r

2
Hkj(r)dr

(k)

3

+
9

4 · 62

LX

k=1

⇢k

Z

V

cik(|r
(k)

3
|)|r(k)

3
|
4�rHkj(r)dr

(k)

3
+ · · · . (510)

If the formula defined by Eq. (116) is used as the forms of coe�cients, Eq. (505) is

simplified as

LX

k=1


�ik � ⇢kbc(0)ik

�
Hkj(r) =C

⇤
ij
(r) +

LX

k=1

⇢k
bC⇤(0)
ik

Pkj(r)

+
LX

k=1

⇢k
bC⇤(2)
ik

r
2
Pkj(r) +

LX

k=1

⇢kbc(2)ik
r

2
Hkj(r)

+
9

4

LX

k=1

⇢k
bC⇤(4)
ik
�rPkj(r) +

9

4

LX

k=1

⇢kbc(4)ik
�rHkj(r) + · · · , (511)
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where the coe�cients bC⇤(↵)
ik

and bc(↵)
ik

(↵ = 0, 2, 4) are given by Eq. (116) as

bC⇤(↵)
ik

=

✓
1

6

◆↵/2 Z

V

C
⇤
ik
(|r(k)

3
|)|r(k)

3
|
↵dr(k)

3
, (↵ = 0, 2, 4), (512)

and

bc(↵)
ik

⌘

✓
1

6

◆↵/2 Z

V

cik(|r
(k)

3
|)|r(k)

3
|
↵dr(k)

3
, (↵ = 0, 2, 4). (513)

Then, Eq. (269) requires the following relation to be satisfied.

bc(↵)
ik

= bC+(↵)

ik
+ bC⇤(↵)

ik
, (↵ = 0, 2, 4). (514)

In Eq. (511), factors 9

4
⇢k
bC⇤(4)
ik
�rPkj(r) and

9

4
⇢kbc(4)ik

�rHkj(r) correspond to correction terms

under the condition that the value of r is not large although its value is out of the microscopic

range in which C
+(r) 6= 0 and C

⇤(r) 6= 0 are satisfied.

2. Estimates of bC+(0)

↵�
, bC+(2)

↵�
, bC⇤(0)

↵�
, and bC⇤(2)

↵�

Equation (324) allows a coe�cient bC+(0)

↵�
to be estimated as

bC+(0)

↵�
=

1

(⇢↵⇢�)1/2
lim
k!0


�↵� �

2X

h=1

eQ+

↵h
(k) eQ+

�h
(�k)

�
. (515)

If the three-dimensional elements of k are denoted as (kx, ky, kz), a di↵erential operator

with respect to k can be defined as rk ⌘ (@/@kx, @/@ky, @/@kz). For a correlation function

Fij(r) satisfying limr!1 Fij(r) = 0, the above definition results in

lim
k!0

lim
V!1

(⇢i⇢j)
1/2(d2

/dk2)

Z

V

Fij(r) exp[ik · r]dr =
11

6
lim
k!0

(rk ·rk) eFij(k).

This relation implies

(⇢i⇢j)
1/2

Z

V

Fij(r)r
2dr = �(6/11) lim

k!0

(d2
/dk2) eFij(k).

According to this formula, Eq. (324) allows a coe�cient bC+(2)

↵�
to be estimated as

bC+(2)

↵�
=

1

11

1

(⇢↵⇢�)1/2
lim
k!0

2X

h=1


d2

dk2

eQ+

↵h
(k) eQ+

�h
(�k)�

d

dk
eQ+

↵h
(k)

d

d(�k)
eQ+

�h
(�k)

+ eQ+

↵h
(k)

d2

d(�k)2
eQ+

�h
(�k)

�
. (516)
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A coe�cient eQ+

↵�
(k) in Eqs. (515) and (516) is described by Eqs. (490) and (495). Ac-

cording to Eq. (514), bC⇤(0)
↵�

, and bC⇤(2)
↵�

can be estimated as

bC⇤(0)
↵�

= bc(0)
↵�

� bC+(0)

↵�
, (517)

bC⇤(2)
↵�

= bc(2)
↵�

� bC+(2)

↵�
. (518)

The coe�cients bc(0)
↵�

and bc(2)
↵�

can be estimated by solving the Ornstein–Zernike equation.

When bC+(0)

↵�
and bC+(2)

↵�
for a point charge system are be assessed, Eqs. (572), (573), (574),

and (575) can be used with Eqs. (490), (495), (515) and (516).

3. Di↵erential equations for characterizing long-range features of Pij(r)

( a ) Di↵erential equation for L components

The magnitude of Pij(r) in Eqs. (506) and (511) cannot be neglected in an ionic fluid

including su�ciently large physical clusters even when the particles of species i and j are

located at a great distance out of the e↵ective range in which the magnitude of uij(r) cannot

be neglected. Di↵erential equations that contribute to estimating Pij(r) and Hij(r) for the

ionic fluid can be derived from Eqs. (506) and (511).

A di↵erential equation derived from Eq. (506) is expressed as

LX

k=1

⇢k
bC+(2)

ik
r

2
Pkj(r)�

LX

k=1

✓
�ik � ⇢k

bC+(0)

ik

◆
Pkj(r) ⇡ �C

+

ij
(r). (519)

If Eq. (519) is multiplied by (⇢i⇢j)1/2,

LX

k=1

p
⇢i⇢k

bC+(2)

ik
r

2
Pkj(r)�

LX

k=1

✓
�ik �

p
⇢i⇢k

bC+(0)

ik

◆
Pkj(r) ⇡ �

p
⇢i⇢jC

+

ij
(r),

(520)

where

Pkj(r) ⌘
p
⇢k⇢jPkj(r). (521)

If the determinant of the matrix Mhi is expressed as det|Mhi|, the inverse matrix of
p
⇢�⇢�

bC+(2)

��
is given as

(�1)h+i
det|

p
⇢h⇢i

bC+(2)✏

hi
|

det|
p
⇢�⇢�

bC+(2)

��
|

,
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where matrix
p
⇢h⇢i

bC+(2)✏

hi
does not include the specific elements

p
⇢h⇢�

bC+(2)

h�
(� = 1, 2, · · · L)

and
p
⇢�⇢i

bC+(2)

�i
(� = 1, 2, · · · L).

If this inverse matrix is used, Eq. (519) can be rewritten as

r
2
P ij(r)�

LX

h=1

(�1)h+i
det |

p
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bC+(2)✏
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|
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p
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◆
Pkj(r)

⇡�

LX

h=1

(�1)h+i
det |

p
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bC+(2)✏

hi
|

det |
p
⇢�⇢�

bC+(2)

��
|

p
⇢h⇢jC

+

hj
(r), (522)

where C+

hj
(r) must be given as the long-range contribution. Equations (519) and (522) allow

C
+

ij
(r) to become a source of generating the correlation characterized by Pij(r). Thus, Eqs.

(519) and (522) enable the estimation of the long-range feature of Pij(r) for an ionic fluid

including large physical clusters.

( b ) Approximated di↵erential equation for L = 2 at large r

The behavior of Pij(r) at large r must be restricted by
P

2

k=1
ek⇢kPik(r) = 0, which

is given by Eq. (453). This fact denotes that Eq. (453) requires Pij(r) = Pii(r) (i 6= j)

at large r because the electroneutrality requires
P

2

k=1
ek⇢k = 0. Thus, Eq. (522) can be

approximated owing to Eq. (521) as

r
2
Pij(r)�

�
⇠
+

i

�2
Pij(r) ⇡

2X

h=1

⇣
(h)+

ij

✓
e
�r

r

◆5/2�|h�j|

, (523)

where

⇠
+

i
⌘

"
2X

h=1

(�1)h+i
det |

p
⇢h⇢i

bC+(2)✏

hi
|
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bC+(2)
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|

2X
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⇣
�hk �

p
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bC+(0)

hk

⌘r
⇢k

⇢i

#1/2

, (524)

and

⇣
(h)+

ij
⌘ �(�1)h+i

det |
p
⇢h⇢i

bC+(2)✏

hi
|

det |
p
⇢�⇢�

bC+(2)

��
|

r
⇢h

⇢i
K

+

hj
. (525)

The form of C+

hj
(r) that should be considered for deriving Eq. (523) is given by Eq. (473)

as the long-range contribution; it is expressed as C+

hj
(r) = K

+

hj
(e�r

/r)5/2�|h�j| for h = 1, 2

and j = 1, 2. Further, an advantage of the above equation is that the long-range feature of

Pij(r) is estimated without knowing the contribution of C0+

ij
(r), which is strongly dependent

on the hard-core potential of each particle.
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( c ) Solution of di↵erential equation for L = 2

i ) Solution of di↵erential equation Eq. (523)

To form a solution satisfying the di↵erential equation Eq. (523), the ionic fluid system

should be imaginarily divided into the internal area of a spherical region of radius r and the

external area of the spherical region. Then, the center of the spherical region is located at

the origin, t = 0, of a spherical coordinate.

A bound state wherein the contribution of the mutually attractive force between two

charged particles exceeds the contribution of their relative kinetic energy is specified as

an f
+-bond. The correlation generated between a charged particle at t = 0 and another

charged particle at t = r via charged particles linked by only f
+-bonds is given by two

partial contributions. One of the two partial contributions results from charged particles

distributed inside a spherical region of radius r. This is approximately estimated from the

di↵erential equation given by Eq. (523), and it is given by

P
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ij
(r) = �⇠
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i
�ij

2X

h=1

⇣
(h)+

ij
(�ij)

2
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0
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i
; t)

✓
e
�t

t

◆5/2�|h�j|✓
t

�ij

◆2 1

�ij

dt,

(t < r), (526)

where Gij(⇠
+

i
; t) is defined using the spherical Bessel function j0(⌧) and the spherical Hankel

function of the first kind h
(1)

0
(⌧). The function Gij(⇠

+

i
; t) is expressed as

Gij(⇠
+

i
; t) ⌘ j0(i⇠

+

i
t)�

j0(i⇠
+

i
�ij)

h
(1)

0
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i
�ij)

h
(1)

0
(i⇠+

i
t), (527)

where
8
><

>:

j0(⌧) = ⌧
�1 sin ⌧

h
(1)

0
(⌧) = i⌧

�1
e
�i⌧

.

The remainder of the two partial contributions results from charged particles distributed

outside the spherical region. This is approximately estimated from the di↵erential equation

given by Eq. (523); it is given by

P
ex

ij
(r) = �⇠

+

i
�ij

2X
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ij
(�ij)
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(r < t). (528)
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The pair connectedness Pij given as solutions that depend on the term on the right-hand

side of Eq. (523) are obtained as the sum P
in

ij
+ P

ex

ij
. In Eqs. (526) and (528), the product

h
(1)

0
Gij can be expressed as

h
(1)

0
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i
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; t) = �

e
�⇠

+
i (r�t)

2⇠+
i
r⇠

+

i
t
+

✓
1 +
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, (529)
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i
r
. (530)

If the expressions of Eqs. (529) and (530) are considered, the sum P
in

ij
+ P

ex

ij
is given as
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where
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Further, the above solution does not include the contribution given in the case that the term

on the right-hand side of Eq. (523) is equal to zero.

ii ) Behavior of Pij(r) revealed under the condition that ⇠+
i
= 0 is satisfied

According to Eq. (524), ⇠+
i
= 0 is satisfied if �hk�

p
⇢h⇢k

bC+(0)

hk
= 0 is satisfied. According

to Eq. (320), the following equation must be satisfied:
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. (533)

If �hk�
p
⇢h⇢k

bC+(0)

hk
= 0 and Eq. (533) are satisfied, then (⇢k⇢j)1/2 bPkj(0) must diverge toward

the infinity. Then, the percolation of physical clusters must occur. This implies that the

ionic fluid mixture system includes extremely large physical clusters in the condition ⇠
+

i
= 0.

If ⇠+
i
⌧ 1 is satisfied, Eq. (557) is approximated as

Gij(⇠
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i
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�ij
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�ij

t
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i
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t). (534)
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FIG. 32. Behaviors of I(⌫,�;r) (⌫ = 3, 5) for � = 0.1 and 0.05. I3 and I5 correspond to

I(3,�;r) and I(5,�;r), respectively. hdfi⌫ (⌫ = 3, 5) is evaluated from Eq. (545).

If ⇠+
i
= 0 is satisfied, then Eq. (534) allows Eq. (526) to result in
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FIG. 33. Behaviors of I(⌫,�;r) (⌫ = 3, 5) for � = 0.01 and 0.005. I3 and I5 correspond to

I(3,�;r) and I(5,�;r), respectively. hdfi⌫ (⌫ = 3, 5) is evaluated from Eq. (545).

Further, the relation ⇠
+

i
= 0 and Eq. (534) allow Eq. (528) to result in
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FIG. 34. Behaviors of I(⌫,�;r) (⌫ = 3, 5) for � = 0.001 and 0.0005. I3 and I5 correspond to

I(3,�;r) and I(5,�;r), respectively. hdfi⌫ (⌫ = 3, 5) is evaluated from Eq. (545).

The behavior of Pij(r) found for ⇠
+

i
= 0 is expressed by the sum of Eq. (535) and Eq.

(536). If the integration in Eq. (535) is performed,

P
in

ij
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✓
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I
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where
8
><

>:

⌫hj = 3, h 6= j

⌫hj = 5, h = j.

(538)
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. (539)

If the integration in Eq. (536) is performed,
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If �ij = � is satisfied independently of i and j, Pij(r) can be simplified. Then, the sum

of Eqs. (537) and (540) allows Pij(r) to be given as
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ij
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where
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I
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⌘
I
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�

(⌫hj = 3, (h 6= j); ⌫hj = 5 (h = j)). (543)

Thus, the dependence of Pij(r) on r is caused by I(3,�;r) and I(5,�;r).
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If Eq. (221) is used, then the behavior of I(⌫,�;r) (⌫ = 3, 5) is expressed as

I(⌫,�;r) ⇠
⇣
r

�

⌘�3+hdfi⌫
, (⌫ = 3, 5), (544)

where

hdfi⌫ ⌘


�

r

3I(⌫,�;r)

d

dr
I(⌫,�;r)

��1/3

. (545)

The behaviors of hdfi⌫ (⌫ = 3, 5) at least in Figs. 32 and 33 demonstrate that the

dependence of Pij(r) (i = 1, 2; j = 1, 2) on r cannot be expressed as the product of r�1 and

a function given as a Taylor series with respect to r. According to Figs. 32, 33, and 34, the

behaviors of hdfi⌫ (⌫ = 3, 5) depend on �. Although the factor hdfi⌫ is not equivalent

to a fractal dimension of physical cluster, the factor can characterize a fractal structure

of the distribution of charged particles. Thus, the consequences appearing in the figures

indicate that fractal structures formed by physical clusters of charged particles can hold the

dependence on �.
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4. Di↵erential equations for characterizing long-range features of Hij(r)

( a ) Di↵erential equation for L components

A di↵erential equation derived from Eq. (511) enables Hij(rij) to be estimated, and it is

given as
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If Eq. (546) is multiplied by (⇢i⇢j)1/2,
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where

Hkj(r) ⌘
p
⇢k⇢jHkj(r). (548)

If r2
P ij(r) given by Eq. (522) is substituted into Eq. (547), then
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The inverse matrix of
p
⇢�⇢�bc(2)��

is given as
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,
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where the matrix
p
⇢g⇢ibc(2)✏gi

does not include the specific elements
p
⇢g⇢�bc(2)g�

(� = 1, 2, · · · L)

and
p
⇢�⇢ibc(2)�i

(� = 1, 2, · · · L). If this inverse matrix is used, Eq. (549) can be rewritten as
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where C
⇤
gj
(r) and C

+

hj
(r), as well as Pkj(r), must be given as long-range contributions.

( b ) Approximated di↵erential equation for L = 2 at large r

In a ionic fluid system specified by L = 2, the behavior of Hij(r) at large r must be

restricted by
P

2

k=1
ek⇢kHik(r) = 0, which is given for L = 2 by Eq. (454). This fact

denotes that Eq. (454) requires Hij(r) = Hii(r) (i 6= j) to be satisfied at large r because the

electroneutrality requires
P

2

k=1
ek⇢k = 0. For L = 2, Eq. (453) requires Pij(r) = Pii(r) (i 6=

j) at large r. Therefore, Eq. (550) and a relation Eq. (548) allow the following approximation
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where the four coe�cients are defined as
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(555)

If physical clusters of charged particles do not exist in an ionic fluid system specified by

L = 2, the correlation functions related to the formation of physical clusters should vanish,

i.e., Pij(r) = 0 and C
+

ij
(r) = 0. If an ionic fluid includes large physical clusters, the physical

clusters should contribute to forming specific features of the ionic fluid. Hij(r) for the ionic

fluid can be estimated as a solution of Eq. (551) using a solution of Eq. (523). Then, the

solution of Eq. (551) is not independent of Pij(r). Thus, the formation of physical clusters

of charged particles a↵ects the behavior of Hij(r) for the ionic fluid.

( c ) Solution of di↵erential equation for ionic fluid system

When an ionic fluid system includes physical clusters of charged particles, Pij(r) 6= 0 and

C
+

ij
(r) 6= 0 are satisfied. In order to form a solution satisfying the di↵erential equation Eq.

(551) for the ionic fluid system, the ionic fluid system should be imaginarily divided into the

internal area of a spherical region of radius r and the external area of the spherical region.

Then, the center of the spherical region is located at origin t = 0 of a spherical coordinate.

An unbound state in which the contribution of the relative kinetic energy of two charged

particles exceeds the contribution of the mutually attractive force is specified as an f
⇤-

bond. The correlation specified by Hij(r) is generated between a charged particle at t = 0

and another charged particle at t = r via charged particles linked through each path that

includes f ⇤-bonds; it is given by the sum of two partial contributions. One of the two partial

contributions comes from charged particles distributed within a spherical region of radius r

with its center located at t = 0. This is estimated from the di↵erential equation given by
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Eq. (551), and it is described as a sum H
(+)in

ij
(r)+H
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(r). The first part H(+)in
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e↵ects of the physical cluster formation, and it is given by
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where Gij(⇠i; t) is defined as
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Here, the spherical Bessel function j0(⌧) and spherical Hankel function of the first kind
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(1)

0
(⌧) are expressed
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The second part H(⇤)in
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(r) is non-zero even if physical clusters do not exist, and it is given

by
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(558)

The remainder of the two partial contributions results from charged particles distributed

outside the spherical region. This is estimated from the di↵erential equation given by Eq.

(551), and it is described as a sum H
(+)ex

ij
(r) +H

(⇤)ex
ij

(r). The first part H(+)ex
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(r) involves

e↵ects of the physical cluster formation and it is given by
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The other part H(⇤)ex
ij

(r) is non-zero even if physical clusters do not exist, and it is given by
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In Eqs. (556), (558), (559), and (560), the product h(1)

0
Gij has the same form as that expressed

by Eqs. (529) and (530) as
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The correlation function Hij(r) given as a solution satisfying Eq. (551) is expressed as

the sum of Eqs. (556), (558), (559), and (560), i.e.,

Hij(r) = H
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Thus, if Eqs. (561) and (562) are considered, Eq. (563) allows the correlation function Hij(r)

to be given as
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where
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In addition, the above solution does not include the contribution that is given independently

of the term on the right-hand side of Eq. (551).

( d ) For the ionic fluid system with no existence of physical clusters of charged particles

If the physical clusters of charged particles do not exist in an ionic fluid system, correlation

functions related to the formation of physical clusters should vanish, i.e., Pij(r) = 0 and

C
+

ij
(r) = 0. For the ionic fluid system that does not include physical clusters of charged

particles, contributions of Pij(r) and C
+

ij
(r) to the di↵erential equations are completely

neglected. For example, Eq. (551) is simplified as

r
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Hij(r)� (⇠i)
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where Eq. (487) requires C⇤
gj
(r) in Eq. (566) to expressed as

C
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e
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r
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A solution satisfying Eq. (566) is given by Eq. (564) as
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where
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If the integration is performed in Eq. (568),
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Eq. (570) denotes that the dependence of Hij(r) on r is characterized by the product of r�1

and a particular function given as the Taylor series with respect to r. When physical clusters

of charged particles do not exist in the ionic fluid system, the dependence of gij(r) on r is

characterized by the product of r�1 and a particular function given as the Taylor series with

respect to r, because gij(r) is given as the sum Pij(r) +Hij(r) + 1. This result is similar to

both the behavior of gij(r) found by Ulander and Kjellander15 and that found by Attard16.

However, if the magnitude of Pij(r) cannot be ignored, contributions of the physical cluster

formation predicted from Figs. 32, 33, and 34 allow the dependence of gij(r) on r to deviate

from the behavior characterized by the product of r�1 and a particular function given as the

Taylor series with respect to r. This means that charged particles that have small relative

momenta cannot be homogeneously mixed with charged particles that have large relative

momenta below temperatures at which the formation of physical clusters are allowed.

5. Long-range features of correlation functions in ionic fluid systems

Particles with small and large relative momenta cannot be homogeneously mixed; parti-

cles with small relative momenta contribute to the physical cluster growth. The fluid system
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in which the physical cluster formation is allowable has a characteristic structure.52 Even

in an ionic fluid system, charged particles that have small relative momenta cannot be ho-

mogeneously mixed with charged particles that have large relative momenta. The physical

cluster formation allows the factor hdfi⌫ to imply that the distribution of charged particles

can have a fractal structure, although the factor is not equivalent to a fractal dimension of

the physical cluster. Thus, the behavior of hdfi⌫ found from Figs. 32, 33, and 34 implies

that the dependence of the sum Pij(r) + Hij(r) + 1 on r can deviate from the behavior

characterized by the product of r�1 and a particular function given as the Taylor series with

respect to r.

If the formation of physical clusters is ignored, the dependence of gij(r) on r can be

characterized by the product of r�1 and a particular function given as the Taylor series

with respect to r. Deviations from the dependence characterized by the product can be

found through both experiments and numerical simulations. Some experiments allow the

deviations to be demonstrated as the distribution patterns of colloidal particles which occur

with fractal structures.40,67–70 Further, the n umerical simulations allow the deviations to be

demonstrated.72 The distribution patterns of colloidal particles distributed as highly charged

particles in a colloidal suspension indicates that the dependence of gij(r) on r should be

expressed through the sum of Pij(r) and Hij(r) + 1.

Both an interface of an ensemble of particles contributing to the magnitude of Pij(r) and

that of an ensemble of particles contributing to the magnitude of Dij(r) should be approx-

imately determined by the Laplace equation. Each physical cluster should be electrically

neutral because of
P

2

k=1
ek⇢kPik(r) = 0, which corresponds to Eq. (453) being satisfied for

large r. Further, each ensemble of particles contributing to the magnitude of Dij(r) should

be electrically neutral according to
P

2

k=1
ek⇢kDik(r) = 0, which corresponds to Eq. (454)

being satisfied for large r. These facts and Gauss’ law imply that each interface formed

by such ensembles and physical clusters can be determined by the Laplace equation. This

consequence suggests the similarity of the physical cluster formation to the fact that the

probability of finding a di↵using particle at a given point and the patter formation caused

by the aggregation of di↵using particles are described by the Laplace equation40,81. The

characteristic structure formation known from the charged particle distributions described

by Pij(r) and Dij(r) can be one of phenomena related to fractal growth governed by the

Laplace equation.
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6. Appendix: Estimates for point charge system

( a ) Estimates depending on physical cluster formation

Eqs. (485) and (486) allow for relation lim!0 z̆n = 0. Eq. (497) allows for relation

lim!0( bPij(z̆n) � bPij(z̆m)) = 0 even for n 6= m. Then, the use of Eq. (498) allows the

relation lim!0( bPij(z̆n) � bPij(z̆m))/(z̆n + z̆m) < 1 to be proved for n 6= m. This relation

should be approximately satisfied for 0 <  ⌧ 1 and allows Eq. (498) to be modified for

0 <  ⌧ 1 and 0 < �i ⌧ 1 as follows:
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, (571)

where bPij ⌘
bPij(z̆1) ⇡ bPij(z̆2).

For a point charge system given as �i = 0 ( 6= 0), Eqs. (501) and (571) can be extremely

simplified as
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where ⌫n ⌘ 22�n. Then, Eq. (573) allows the dependence of Dn

ij
on , although the depen-

dence was neglected in the previous work.80

The symmetry condition bP12 = bP21 allows Eq. (572) to result in

2X
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= 0. (574)

Since the requirement of a symmetry condition given as |e1| = |e2| requires bP11 = bP22, the

condition |e1| = |e2| allows Eqs. (572) and (573) to result in
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and

D
2

22
= ±


z̆2 + z̆1

z̆2 � z̆1

✓
4⇡

⇢1
K

2

22
+

z̆2 � z̆1

z̆2 + z̆1
D

2

12
D

2

21

◆�
. (576)

238



In addition, the selection of plus sign in Eq. (576) can give bC+(0)

↵�
and bC+(2)

↵�
to approximate

values which lack physical meanings.

( b ) Estimates depending on Ornstein–Zernike equation

i ) Solution of Ornstein–Zernike equation

The coe�cients bc(0)
↵�
, and bc(2)

↵�
can be estimated by solving the Ornstein–Zernike equation.

The Ornstein–Zernike equation can be expressed as
8
><

>:

P
2

k=1
[�ik + ehik(k)] eQkj(k) = eQ(�1)

ij
(�k)

�ij � ecij(k) =
P

2

k=1
eQik(k) eQjk(�k),

(577)

where
8
><

>:

ehij(k) ⌘ limV!1(⇢i⇢j)1/2
R
V
(gij(r)� 1) exp[ik · r]dr

P
2

k=1
eQ(�1)

ki
(�k) eQjk(�k) = �ij.

(578)

According to a solution of the Ornstein–Zernike equation,82 the coe�cient eQij(k) can be

simply given for a point charge system as
8
>>>>>>>>><

>>>>>>>>>:

eQij(k) ⌘ �ij � (⇢i⇢j)1/2(�ik + z)�1
Dij

Dij ⌘ �2�eiej
⇣P

2

l
⇢l(el)2

⌘�1

� = 1

2


�z +

✓
z
2 + ↵

2

0

P
2

k
⇢k(ek/e0)2

◆1/2�

z ⌘ .

(579)

ii ) Coe�cients bC⇤(0)
↵�

and bC⇤(2)
↵�

The coe�cients bC⇤(0)
↵�

, and bC⇤(2)
↵�

can be estimated as bC⇤(0)
↵�

= bc(0)
↵�

� bC+(0)

↵�
, and bC⇤(2)

↵�
=

bc(2)
↵�

� bC+(2)

↵�
according to Eq. (514).

If (⇢i⇢j)1/2
R
V
cij(r)r2dr = �(6/11) limk!0(d2

/dk2)ecij(k) is considered with Eqs. (577)

and (579), the coe�cients bc(0)
↵�

and bc(2)
↵�

are estimated for a point charge system as

bc(0)
↵�

=
1

z
(D↵� +D�↵)�

1

z2

2X

k

⇢kD↵kD�k (580)

and

bc(2)
↵�

=
2

11z3
(D↵� +D�↵)�

2

11z4

2X

k

⇢kD↵kD�k. (581)
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V. CONTRIBUTIONS CAUSED BY STRUCTURE FORMED IN BOSE

FLUID SYSTEM

The specific heat CV of a Bose fluid system, which can be explained using quasiclassical

expressions of its partition function, exhibits a discontinuity at a temperature Tc. The

maximum of CV at T = lim�!0(Tc � �) is di↵erent from that at T = lim�!0(Tc + �).

Tc corresponds to the temperature at which the absolute value of the chemical potential

becomes equivalent to the magnitude of the mean e↵ect of attractive forces acting between

a single particle and other particles surrounding it. The dependence of Tc on repulsive

interactions can be found as the mean e↵ect of exclusion caused by the hard core of each

particle. Further, if the contribution of specific motions of particles having su�ciently low

kinetic energies corresponds to the contribution from rotons, the contribution leads to a

sharp increase in CV near Tc.

A. Introduction

A discontinuity in the temperature dependence of the specific heat can occur at the tran-

sition temperature below which features of a Bose fluid deviate from their normal behavior.

The confirmation of the discontinuity is demonstrated for an ideal Bose gas in a uniform

gravitational field.90 The possibility of the discontinuity is generally suggested in terms of

energy fluctuations.91 Thus, it should be possible to confirm the discontinuity even for a real

Bose fluid system wherein the constituent particles interact with each other.

The features of a Bose fluid are a↵ected by interactions between particles that constitute

its fluid system. From analytical estimates of thermodynamic quantities,92,93 it is possible

to briefly know the behavior of a Bose fluid system, which consists of particles that interact

with each other only via repulsive forces. According to a theoretical interpretation,92 the

Bose fluid system becomes unstable if attractive forces contribute to interactions between

the particles. In a trapped Bose fluid system, attractive forces between particles that con-

stitute the system can lead to phase disturbance of the system.94,95 Decreases in the mean

interparticle distance can induce a condition where the contribution of attractive interparti-

cle interactions is dominant if the mean interparticle distance is decreased beyond a critical

value. This allows the sign of the reciprocal of the isothermal compressibility 
�1 to change
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from positive to negative.96

The transition temperature at which the normal behavior of a Bose fluid system disap-

pears is a↵ected by interactions between particles constituting a Bose fluid system. If only

repulsive forces contribute to interactions between the particles, the transition temperature

is increased to a value exceeding that of an ideal Bose gas.92,97 If both a repulsive force being

dominant only within a short range and an attractive force being influential over a long-range

contribute to the interactions between each pair of particles, the transition temperature for

a Bose fluid system consisting of the particles is decreased to a lower value than that of an

ideal Bose gas.98 This is a phenomenon confirmed numerically under the condition that the

particle density ⇢ of the system is su�ciently low.98 In the condition, the relation ⇢|as|
3
⌧ 1

is satisfied with as denoting the s-wave scattering length corresponding to the hard-sphere

diameter.

Conversely, if the mean interparticle distance ⇢
�1/3 is comparable with the diameter

�0 of hard core of each particle, a relation 1 < ⇢
�1/3

/�0 < 1.2 can be satisfied. Then,

each of particles constituting the Bose fluid system should transiently localize around its

average position owing to the hard cores of other particles surrounding it, while thermally

randomly moving. An increase in the density of hard cores can a↵ect the normal macroscopic

behavior of the Bose fluid that should be characterized by the thermally random motion

of particles. The increase can a↵ect the transition temperature, which corresponds to the

lowest temperature at which the Bose fluid maintains normal macroscopic behavior. In case

of liquid helium, its transition temperature depends on the density of hard cores caused by

helium atoms.99

If the temperature of liquid helium is below the transition temperature, then a phase that

allows generation of quasiparticles, such as rotons and phonons,99–102 is induced. If many

microscopic portions that maintain the phase occur within liquid helium, then the normal

behavior induced for the existence of the other phase is disturbed.103

To mathematically analyze the phase wherein particles constituting a Bose fluid system

move thermally and randomly, the kinetic energy of the translational motion of each particle

in the phase is treated quasiclassically.104 This allows quasiclassical expressions of a partition

function to be adequate approximations. An approximate method for treating repulsive and

attractive interactions as mean-field e↵ects aids in forming the quasiclassical expressions.

The quasiclassical expressions allow the behavior of the specific heat to be confirmed near
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the transition temperature. According to the quasiclassical expressions, the transition tem-

perature depends on the repulsive force, and the discontinuity in the behavior of the specific

heat is confirmed as known.90,91,105

B. Approximate Aspects

1. Characterizations of system

The thermodynamics of a Bose fluid system consisting of particles moving with positive

energies "↵ (↵ = 0, 1, 2, · · · ) at temperature T are characterized by a partition function

Q
(µ) =

Q
↵

⇢
1� exp

⇥
��("↵ � µ)

⇤��1

. The chemical potential µ is negative for T > 0, and

its negative value limits the number of particles moving with lower energies. The quantity �

is defined by � ⌘ 1/(kBT ), where kB denotes the Boltzmann constant. If the average number

of particles moving with an energy "↵ is denoted by hn↵i, the total number of particles in

the system is given by hNi ⌘
P

↵
hn↵i, where hn↵i =

�
exp[�("↵ � µ)]� 1

 �1

. For the total

number hNi, the wave function for characterizing the behavior of the system is expressed

as  (r1, r2, · · · , rhNi).

When localized ensembles are formed in the system by particles with su�ciently low

energies "↵⇤ , it is di�cult for the particles to move with random mutual scattering. If the

hard cores of particles constituting each ensemble are located near each other, they can be

allowed to move coherently. Under the condition that the existence of the particles with "↵⇤ is

not ignored, the characteristic excitation states corresponding to quasiparticles is induced.1

At low temperatures below the transition temperature, the thermodynamic properties of

the system can involve specific portions that are described in terms of the contributions of

quasiparticles, namely, rotons and phonons.1,104,106

Given the assumption that each of hNi � hn̄i particles is subject to random motion due

to scattering from other particles in the Bose fluid system of hNi particles, hn̄i particles

should contribute to coherent motion. The contribution from hn̄i particles to the internal

energy is given by
P

↵⇤hn↵⇤i"↵⇤ for ↵⇤ satisfying
P

↵⇤hn↵⇤i = hn̄i. The quantity
P

↵⇤hn↵⇤i"↵⇤

should, however, be estimated as the contribution from quasiparticles to avoid di�culty in

estimating "↵⇤ .

If the temperature of the system increases toward the transition temperature, then more
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particles undergo thermal scattering, and this changes the properties of the system. In this

process, a loss of ensembles of particles moving coherently occurs, and simultaneously, a

loss of the excitation states is exhibited. Ultimately, the number of quasiparticles decreases

in the process.100 The random thermal motion of the particles causes coherent motion to

disappear. However, at temperatures near the transition temperature, particles participating

in the formation of excitation states can coexist with other particles that move with random

thermal scattering.102

For each particle in the system, the three-dimensional area in which | (r1, r2, · · · , rhNi)|2 6=

0 is satisfied is not equivalent to the volume V of the system. This is caused by the exclusion

e↵ect that results from the presence of repulsive interactions between particles. It decreases

in strength with increases in the degree of random motion of each hard-core particle due to

scattering from other particles. Conversely, the exclusion e↵ect becomes stronger at lower

temperatures. If the e↵ective volume Ve↵ is applied for random movements of particles, Ve↵

decreases in the aforementioned situation. Furthermore, if particles that are located near

each other with small momenta move coherently without mutual scattering, the e↵ective

volume Ve↵ for random movements of particles becomes further small in comparison with

the volume V of the system. The consideration of the exclusion e↵ect is equivalent to the

consideration of repulsive interactions in terms of the mean-field e↵ect, and the use of Ve↵

facilitates the consideration of repulsive interactions.

2. Hartree approximation

In a fluid system, the motion of a particle is a↵ected by the attractive forces due to the

other particles surrounding it. When this is considered as a mean-field e↵ect of the attrac-

tive forces, it facilitates a simple analysis of the thermodynamic behavior. In this context, a

suitable approach denotes the Hartree approximation, which is applied for analyzing oscilla-

tions of a Bose–Einstein condensate fluid107 and describing the condensate wave function108

for N particles.

The Hartree approximation is based on an approximate expression of the form (r1, r2, · · · , rN) =
Q

N

i=1
�i(ri), where the state �i(r) of a single particle at location r in the fluid system satisfies
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the equation

�
h̄
2

2m
r

2
�i(r) +

NX

j=1,(j 6=i)

Z

V

�
⇤
j
(rj)ŭ(|r� rj|)�j(rj)drj�i(r)� "i�i(r) = 0. (582)

In Eq. (582), m is the mass of each particle. Specifically, a single particle i belonging to

the state �i(r) moves with energy "i, and �j satisfies
R
V
�
⇤
j
(rj)�j(rj)drj ⌘ h�j|�ji = 1.

The pair potential ŭ(|r� rj|) characterizes attractive and repulsive forces acting between a

particle j at location rj and another particle at location r. Hence, it denotes ŭ(|r � rj|) =

ŭa(|r� rj|) + ŭr(|r� rj|).

With respect to an aspect for the motion of each particle in the fluid system, it is possible

to consider that a single particle moves within an imaginal cylinder with a length equal to the

mean free path lf and with a cross section equal to that of a particle, as exemplified in Fig. 35.

The aforementioned aspect allows
P

N

j=1,(j 6=i)

R
V
�
⇤
j
(rj)ŭa(|r�rj|)�j(rj)drj to be expressed as

the total contribution of attractive pair potentials characterizing attractive forces between

the single particle within the cylinder and other particles (j = 1, 2, · · · ) surrounding the

cylinder. An approximation of the total contribution is obtained by assuming a spherically

symmetric well as a pair potential. The spherically symmetric well is given as follows:
8
>>>>>>>><

>>>>>>>>:

ŭr(|r� rj|) = +1 (|r� rj| < �0),

ŭr(|r� rj|) = 0 (�0 < |r� rj|),

ŭa(|r� rj|) = �ua (�0  |r� rj|  �1 and ua > 0),

ŭa(|r� rj|) = 0 (�1 < |r� rj| < 1).

For the features of the pair potential, �j must satisfy �j(rj) = 0 (0 < |rj| < �0) and

�j(rj) 6= 0 (�0 < |rj| < 1).

The particles (j = 1, 2, · · · ) surrounding the cylinder are distributed with the particle den-

sity given by ⇢ =
P

N

j=1, (j 6=i)
�
⇤
j
(rj)�j(rj). If ⇢ maintains the same value in any microscopic

portions of the fluid system on average, the total contribution of attractive pair potentials

is constant in the cylinder on average. Therefore, the depth of the total contribution should

be proportional to both �ua and ⇢, i.e.,

NX

j=1,(j 6=i)

Z

V

�
⇤
j
(rj)ŭa(|r� rj|)�j(rj)drj = �V̆a⇢ua,

where V̆a denotes the proportionality constant.
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FIG. 35. Schematic image representing the distribution of particles in a fluid system. The white

particle moves within an imaginal cylinder with length lf of the mean free path.

P
N

j=1,(j 6=i)

R
V
�
⇤
j
(rj)ŭr(|r� rj|)�j(rj)drj is expressed as the total contribution of repulsive

pair potentials that appear at the end of the cylinder because only the hard core of each

particle contributes to repulsion. Hence, the total contribution should be proportional to the

number of particles colliding with the single particle in the cylinder. The number is given by
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⇢V̆r with V̆r ⌘ (1/2)[4⇡�3

0
/3 � 4⇡(�0/2)3/3]. In an isotropic phase maintained on average,

the magnitude of
P

N

j=1,(j 6=i)

R
V
�
⇤
j
(rj)ŭr(|r � rj|)�j(rj)drj is independent of the orientation

of the cylinder. Thus,

NX

j=1,(j 6=i)

Z

V

�
⇤
j
(rj)ŭr(|r� rj|)�j(rj)drj = ur⇢V̆r✓(r � lf ), (r = |r|).

Specifically, ur denotes the proportionality constant although the dependence of ur on ⇢ can

appear for a variation in ⇢. In the above equation, ✓(r � lf ) denotes the Heaviside step

function with the mean free path lf .

Ultimately, the mean-field e↵ects of the attractive and repulsive forces on the motion of

the single particle at location r is expressed as follows:

NX

j=1, (j 6=i)

Z

V

�
⇤
j
(rj)ŭ(|r� rj|)�j(rj)drj = �V̆a⇢ua + ur⇢V̆r✓(r � lf ), (r = |r|).

Given the use of the Hartree approximation and the aforementioned formalism for the mean-

field e↵ects, the energy "↵ corresponding to an approximate state �↵ of a single particle

approximately satisfies the following simple equation:

("↵ � µ)|�↵i =


�

h̄
2

2m
r

2
� Ua + Ur✓(r � lf )� µ

�
|�↵i, (583)

where Ua ⌘ V̆a⇢ua and Ur ⌘ ur⇢V̆r denote positive quantities.

Additionally, the temperature at which the equality Ua + µ = 0 holds is denoted by Tc

in the study. The inequality Ua + µ < 0 always holds for Tc < T , and Ua + µ � 0 holds for

T  Tc.

C. Two quasiclassical expressions for Q
(µ)

Two quasiclassical expressions are given for the partition function Q
(µ). One of the

expressions corresponds to Q
(µ) for Tc < T , and the other expression corresponds to Q

(µ) for

T  Tc. Each of the two quasiclassical expressions for Q(µ) of a Bose fluid system is given

in terms of a form corresponding to Eq. (583).

If the kinetic energy of translational motion of a particle is expressed in terms of its

momentum p, then a quasiclassical expression for Eq. (583) is given as follows:

"↵ � µ = p
2
/(2m)� Ua + Ur✓(r � lf )� µ, (584)
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where p ⌘ |p| and "↵ � µ > 0.

1. Expression for Q
(µ)

for T > Tc

For T > Tc, the inequality �Ua � µ > 0 is satisfied, and thus p
2
/(2m) � Ua � µ > 0 is

satisfied for p with an arbitrary value in the range 0  p < 1. There is no restriction on

the value of p. Therefore, a quasiclassical expression for Q(µ) is given for Tc < T by

1

�
lnQ(µ) = �

1

�

Z

V

d3r

Z 1

0

s d3p

(2⇡h̄)3
ln

⇢
1� } exp


��

✓
p
2

2m
� Ua + Ur✓(r � lf )� µ

◆��
,

(585)

where the factor d3rs d3p/(2⇡h̄)3 denotes the number of modes existing in a volume d3r

between p and p + dp with s denoting the number of possible spin states (s = 3, m 6= 0).

Additionally, } = 1 must be satisfied in Eq. (585) based on the assumptions in the study.

Re-writing of Eq. (585) yields the following expression:

1

�
lnQ(µ) =

2s

3�(2⇡)2h̄3

✓
�

2m

◆3/2

�
�
5

2

� 1X

k=1

}
k
e
kµ̄

k5/2
Vk(Ur), (586)

where µ̄ denotes a dimensionless quantity that is defined as follows:

µ̄ ⌘ �(Ua + µ), (587)

Additionally, Vk is defined as follows:

Vk(Ur) ⌘

Z

V

exp [�k�Ur✓(r � lf )] 4⇡r
2 dr. (588)

To facilitate the summation in Eq. (586), the Cauchy–Schwarz inequality should be consid-

ered. It results in the following expression:

1X

k=1

}
k
e
kµ̄

k5/2
Vk(Ur) 

1X

k=1

}
k
e
kµ̄

k5/2

1X

k=1

Vk(Ur).

However, the factor
P1

k=1
Vk(Ur) cannot simply correspond to a quantity Ve↵ representing

the e↵ective volume because the factor diverges to infinity for Ur = 0. It is possible to

avoid this problem. Multiplying the factor by e
�k� allows its behavior to be normalized.
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For � = ln 2, the relation limUr!0

P1
k=1

Vk(Ur)e�k� = V is satisfied. This allows a practical

definition of Ve↵ as follows:

Ve↵ ⌘

1X

k=1

Vk(Ur)e
�2k

= vf +
V � vf

2e�Ur � 1
, (589)

where vf is defined as vf ⌘ 4⇡l3
f
/3. The use of Ve↵ can allow simple approximate forms to

be given to thermodynamic quantities.

Additionally, Ve↵ in the normal liquid state should always significantly exceed vf ; i.e.,

0 < vf/Ve↵ ⌧ 1 because lf denotes the mean free path. If atomic arrangements are locally

similar to those in the solid state, then vf is allowed to become comparable to Ve↵ .

The dependence of Ur on ⇢ is revealed if the e↵ective volume Ve↵ given by Eq. (589) is

substituted into Eq. (B2). Additionally, assuming that the condition 0 < vf/V ⌧ 1 holds

at T = Tc, the dependence is simplified as follows:

Ur =
1

�c

ln


1

2
+

s
p
⇡

✓
m

2⇡h̄2
�c

◆3/2�(3/2)⇣(3/2)

⇢

�
, (590)

where �c ⌘ 1/(kBTc). Thus, Tc depends on Ur.

2. Expression for Q
(µ)

for T  Tc

The partition function Q
(µ) is re-expressed as follows:

1

�
lnQ(µ) = G1 + G2, (591)

where

G1 ⌘�
1

�

X

↵
⇤

for 0p<pmin

ln
⇥
1� e

��("↵⇤�µ)
⇤

(592)

G2 ⌘�
1

�

X

↵
⇤

for pminp<1

ln
⇥
1� e

��("↵⇤�µ)
⇤
. (593)

In Eq. (592), G1 denotes the contribution from hn̄i particles that move with momenta being

within the range 0  p < pmin, because the number of particle hNi in the system is given as
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follows:

hNi = hn̄i+
X

↵
⇤

for pminp<1

hn↵⇤i, (594)

where

hn̄i =
X

↵
⇤

for 0p<pmin

hn↵⇤i. (595)

Then, G2 in Eq. (593) denotes the contribution from hNi � hn̄i particles that move with

momenta being within the range pmin  p < 1. In the aforementioned formulas, there is

no requirement for restricting the value of pmin.

If Eq. (593) is expressed as a quasiclassical expression, G2 is given as follows:

G2 = �
1

�

Z

V

d3r

Z 1

pmin

s d3p

(2⇡h̄)3
ln


1� exp

✓
�
�p

2

2m
+ µ̄� �Ur✓(r � lf )

◆�
. (596)

The integral forming Eq. (596) is modified, and the following expression is obtained:

G2 =�
4⇡s

3(2⇡h̄)3�

⇢
vfp

3

min
ln


1� exp

✓
�
�p

2

min

2m
+ µ̄

◆�

� (V � vf )p
3

min
ln


1� exp

✓
�
�p

2

min

2m
+ µ̄� �Ur✓(r � lf )

◆�

�
�

m

1X

k=1

Z 1

pmin

d3p p
4 exp


�k

✓
�p

2

2m
� µ̄

◆�Z

V

d3r exp
⇣
�k�Ur✓(r � lf )

⌘�
. (597)

The final term on the right-hand side of Eq. (597) is estimated by using Ve↵ . Thus, an

expression of Q(µ) for T  Tc is re-expressed as the sum including G2 given by Eq. (597).

When T is less than Tc, the inequality µ̄ > 0 must be satisfied. Hence, Eq. (597) requires

pmin to satisfy the relation ��p
2

min
/2m + µ̄ < 0. The relation

p
2mµ̄ < pmin must be

considered for Eq. (597) as a requirement for restricting the value of pmin. When G2 given by

Eq. (597) is used to estimate (1/�) lnQ(µ), hn̄i particles that cause the contribution G1 must

have small momenta restricted by 0  p < pmin with
p
2mµ̄ < pmin. Conversely, hNi � hn̄i

particles that cause the contribution G2 have large momenta satisfying pmin  p < 1. Hence,

it should be possible for the hNi � hn̄i particles to assume that they move individually in a

random manner.

The hn̄i particles should be prevented from moving individually and freely, because they

carry momenta limited within the range 0  p < pmin while interacting with each other via

attractive forces. Nevertheless, the particles should not be prevented from moving coher-
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ently, while being assisted by the e↵ect of repulsive interactions. Excitation states accom-

panying the motion should allow the inequality "↵⇤ � µ > 0 to be preserved in conjunction

with the inequality �Ua � µ < 0. Under the condition that p and µ satisfy 0  p < pmin

and �Ua � µ < 0, respectively, "↵⇤ should satisfy "↵⇤ � µ > 0. Thus, contributions to

thermodynamic properties from the excitation states should be estimated. In the study, the

contributions are estimated as the sum of the contributions from quasiparticles.

Additionally, the value of pmin is estimated from the following expression:

�p
2

min

2m
� �(Ua + µ) = ⌘ (⌘ > 0). (598)

⌘ is estimated via a procedure shown in Appendix B. The basis of the procedure follows the

relation

lim
�!0

@

@µ

✓
1

�
lnQ(µ)

◆ ����
T=Tc+�

= lim
�!0

@

@µ

✓
1

�
lnQ(µ)

◆ ����
T=Tc��

. (599)

The relation requires the number of particles in the system to be preserved at T = Tc given

hNi = (@/@µ)[(1/�) lnQ(µ)].

D. Thermodynamic quantities obtained from quasiclassical expressions

1. Internal energy

The internal energy E of the system is estimated via the relation E = �(@ lnQ(µ)
/@�)µ+

µ(@��1 lnQ(µ)
/@µ)�. For Tc < T , the use of Eq. (585) allows the estimation of E to proceed.

Based on the use of a function Z
0, which is defined in Appendix A for pmin = 0, E is given

as follows:
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where ⇠T denotes a dimensionless quantity that is defined as follows:

⇠T ⌘

p
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◆3/2

. (601)

Similarly, the internal energy for T  Tc is estimated by applying Eq. (591) with Eqs. (592)

and (597) to E = �(@ lnQ(µ)
/@�)µ,pmin + µ(@��1 lnQ(µ)

/@µ)�,pmin . Based on the use of a

function Z that is defined in Appendix A for pmin 6= 0, E is given as follows:

E =
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The second and third terms on the right-hand side of Eq. (602) represent the sum of the

contributions from the particles with momenta within the range pmin  p < 1. The first

term denotes the sum of all energies carried by the specific motions of hn̄i particles wherein

each is limited by 0  p < pmin. In the study,
P

↵⇤ "↵⇤hn↵⇤i is estimated as the contributions

from quasiparticles.

2. Specific heat CV at constant volume

For Tc < T , the derivative (@E/@T )V is calculated from Eq. (600). The derivative allows

the specific heat CV at constant volume for Tc < T to be expressed as follows:

CV =
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. (603)

Specifically, @µ̄/@� is obtained by di↵erentiating Eq. (B1) with respect to � at constant V

and constant hNi. Finally, @µ̄/@� is obtained for Tc < T as
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The use of Eq. (604) allows Eq. (603) to be somewhat simplified as follows:
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. (605)

The formula implies that the value of CV for Tc < T cannot directly depend on Ua. Thus,

CV is related to Ua only via µ̄.

As T ! Tc, Z0

1/2
(µ̄) diverges to +1. Near Tc, the behavior of Z0

1/2
allows @µ̄/@� given

by Eq. (604) to approach zero. Based on Appendix A, limT!Tc Z
0

5/2
(µ̄) = �(5/2)⇣(5/2)

because µ̄ = 0 at T = Tc. Therefore, the value of CV evaluated from Eq. (605) must reach

its maximum at T = Tc.

To estimate CV for T  Tc, the derivative (@E/@T )V must be calculated from Eq. (602).
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Subsequently, CV obtained for T  Tc is expressed as follows:
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For T  Tc, @µ̄/@� is estimated by di↵erentiating Eq. (B4) with respect to � at constant V

and constant hNi, and is given as follows:
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The use of Eq. (607) allows Eq. (606) to be somewhat simplified as follows:

CV =
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The relationship between CV and �Ua in Eq. (608) is di↵erent from that in Eq. (605), and

the value of CV for T  Tc can depend directly on Ua.

When ⌘, hn̄i, and @"↵⇤hn↵⇤i/@� are all considered as zero in Eq. (608), the resulting

value of CV at T = Tc agrees with that obtained from Eq. (605) at T = Tc. Based on

Eq. (B7), ⌘ = 0 implies that the value of hn̄i is evaluated as zero at T = Tc. If ⌘ is

considered as a positive nonzero value, hn̄i is not zero at T = Tc. Then, the value of CV

evaluated from Eq. (608) at T = Tc is di↵erent from that evaluated from Eq. (605) at

T = Tc. For ⌘ 6= 0, Eqs. (605) and (608) allow a discontinuity in CV at T = Tc. Such a

discontinuity is theoretically predicted for an ideal Bose gas in a uniform gravitational field90,

experimentally demonstrated for liquid helium105, and theoretically predicted in terms of

energy fluctuation.91 Additionally, the occurrence of a discontinuity in CV at T = Tc is

independent of the method by which the quantity
P

↵⇤ (@"↵⇤hn↵⇤i/@�)
V
is estimated.
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Equation (607) involves the quantity Z1/2 (µ̄; ⌘) that is characterized by the value of

⌘, which should be su�ciently small based on Eq. (B7). From Eq. (A4) in Appendix A,

Z1/2 (µ̄; ⌘) is expressed as follows:

Z1/2 (µ̄; ⌘) =
1X

k=1

e
kµ̄

k1/2
�(1/2, k(µ̄+ ⌘)) .

Based on the equation, the value of Z1/2(µ̄; ⌘) is large and finite for small ⌘, even if µ̄ = 0

is satisfied.

3. Value of Ua and restriction on value of ⌘

A restriction, which is expressed as ⌘ 6= 0, is determined by estimating the isothermal

compressibility  for T  Tc. A restriction on the value of Ua for which a phase transition

specified by 1/ = 0 is avoided is determined from  for Tc < T . For Tc < T (i.e.,

µ̄ < 0), 1/ is estimated by di↵erentiating the pressure given by P = �
�1(@ lnQ(µ)

/@V )hNi�

hNi(@µ/@V )hNi.

From the use of Eq. (585), P is obtained as follows:
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where ve↵ ⌘ 3vf/(2e�Ur � 1). Based on the relation 1/ = �V (@P/@V )
T
, di↵erentiating

Eq. (609) at constant T yields 1/ for Tc < T as follows:
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Specifically, @µ̄/@V is estimated by di↵erentiating Eq. (B1) with respect to V at constant

T and constant hNi, and @µ̄/@V is obtained for Tc < T as follows:
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The derivative @Ve↵/@V is given in Appendix C. The derivative @ve↵/@V is estimated from

ve↵ given in Appendix C.

The derivatives @Ua/@V and @
2
Ua/@V

2 at constant T should satisfy @Ua/@V = �Ua/V

and @
2
Ua/@V

2 = 2Ua/V
2, respectively, because Ua / ⇢. The derivatives @Ur/@V and

@
2
Ur/@V

2 are estimated at constant T from expressions given in Appendix C. The expression

for 1/ given by Eq. (610) is simplified using the expression for Ve↵ if all the contributions

from ve↵ and vf are ignored because 0 < vf/V ⌧ 1 and 0 < ve↵/V ⌧ 1. As the result, 1/

given at T = Tc by Eq. (610) allows deriving a formula that Ua satisfies approximately. The

formula is expressed as
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where V c

e↵
and c denote the value of Ve↵ at T = Tc and the value of  at T = Tc, respectively,

and
��V 2(@2

Ur/@V
2)/V (@Ur/@V )

�� ⌧ 1 is satisfied.

For T  Tc (i.e., 0  µ̄), the relation P = �
�1(@ lnQ(µ)

/@V )hNi,pmin � hNi(@µ/@V )hNi

allows the pressure P to be estimated using Eq. (591) with Eqs. (592) and (597) as follows:
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For T  Tc,  is estimated from the derivative of P , which is obtained by di↵erentiating

Eq. (616) at constant T , and the use of Eqs. (611)–(613) enables  to be expressed as follows:
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where K(µ̄, ⌘) is defined as follows:
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For T  Tc, @µ̄/@V occurring in Eq. (617) is estimated based on Eq. (B8) as follows:
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Eq. (619) is @µ̄/@V estimated at constant hNi.

If we set ⌘, hn↵⇤i, @"↵⇤/@V , and K(µ̄, ⌘) equal to zero, Eq. (617) becomes equivalent to

Eq. (610) at T = Tc (i.e., µ̄ = 0). However, the assumption that ⌘ = 0 is not appropriate.

At T < Tc, the inequality µ̄ > 0 should be satisfied. If ⌘ = 0 and µ̄ > 0 are both satisfied,

then the factor 1� e
�⌘ occurring in Eq. (618) allows the value of 1/ to diverge. By taking

⌘ 6= 0, the problem is simply avoided. This implies that hn̄i 6= 0 is satisfied at T = Tc given

Eq. (B7) in Appendix B. Subsequently, the value of ⌘ satisfying ⌘ 6= 0 requires the value

of 1/ evaluated at T = Tc from Eq. (617) to di↵er from that evaluated at T = Tc from

Eq. (610). The inequality ⌘ 6= 0 allows a discontinuity in 1/ at T = Tc.

With ⌘ 6= 0, Eq. (617) requires that lim�!0 1/|Tc�� 6= 0 even if Eq. (615) requires

that lim�!0 1/|Tc+� = 0 for the specific case in which Ua = Ūa is satisfied. Specifically,

Ūa is defined as Ūa ⌘ (4/3)(1 + V
c

e↵
/V )[Z0

5/2
(0)/Z0

3/2
(0)]V @Ur/@V + 2V 2

@
2
Ur/@V

2. Based

on Eq. (615), the inequality lim�!0 1/|Tc+� > 0 requires 0 < Ua < Ūa to be satisfied.

The inequality implies that the phase transition specified by 1/ = 0 does not occur for

0 < Ua < Ūa at an arbitrary temperature satisfying 0 < (T �Tc)/T ⌧ 1. Thus, it is possible

to evaluate the specific heat CV for the value of Ua that prevents the occurrence of the phase

transition.

E. Evaluation of specific heat

Based on Eq. (B4), the value of µ̄ for T  Tc must satisfy the inequality 0  µ̄ ⌧ 1 at

constant hNi. The restriction on µ̄ allows the approximate relations µ̄ ⇡ 0 and @µ̄/@� ⇡ 0 to
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be satisfied for T  Tc. If these approximate relations are considered, Eq. (608) is simplified

as follows:
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Based on the context, the contribution of the final term in Eq. (620) should be evaluated

as the contribution from rotons, and this is achieved by the use of Eqs. (D24) and (D25).

The derivative @hn̄i/@� is obtained by di↵erentiating Eq. (B4). If the approximate relations

µ̄ ⇡ 0 and @µ̄/@� ⇡ 0 are assumed, @hn̄i/@� is expressed as
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The inequality vf/Ve↵ ⌧ 1 is assumed when deriving Eq. (620). Given the same assumption,

Eq. (605) for Tc < T is approximated as
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. (622)

To evaluate CV given by Eq. (622), it is necessary to determine the value of Ur by using

Eq. (590). From the value of Ur, CV given by Eq. (620) can also be evaluated. Ua is

considered as a parameter that satisfies 0 < Ua < Ūa, and it corresponds to a value that is

given as follows:

Ua = a0(4/3)(1 + V
c

e↵
/V )(V @Ur/@V )Z0

5/2
(0)/Z0

3/2
(0), (0 < a0).

An approximate value of hn̄ic/hNi, where hn̄ic ⌘ hn̄i|T=Tc , is estimated by the extrapolation

of data reported previously109 as follows:

hn̄ic/hNi = 0.001 corresponding to ⌘ = 1.34⇥ 10�6
,

where the corresponding value of ⌘ is evaluated using Eq. (B7).

An example of the results is shown in Fig. 36, which represents a case evaluated using a

specific value of Ur for which Tc = 2.17 K. Figure 36 reveals that CV exhibits a singularity

appearing as a discontinuity at T = Tc. The contribution from the hn̄i particles that carry

small momenta limited within the range 0  p < pmin is evaluated as the contribution from
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FIG. 36. Dependence of CV on T near Tc. The dashed-dotted curves correspond to the contribution

of rotons evaluated for hnic/hNi = 0.001. In (a) and (b), the thick curves on the left correspond

to CV evaluated for hnic/hNi = 0.001 and �cUa = 0.171 (a0 = 0.0644), and then, CV includes

the roton contribution. In (a) and (b), the thick curves on the right correspond to CV evaluated

for Tc < T (Tc = 2.17K) without the roton contribution. The thick curves in (c) and (d) for

Tc < T correspond to CV including the roton contribution. In (a), (b), (c), and (d), thin curves

are obtained by eliminating the roton contribution. The roton contribution is characterized with

a quantity u by the three parameters p0/h̄ = 1.92 ⇥ 1010m�1, µ̂ = 0.115mHe, and �̂/kB, which

are estimated from neutron scattering at 2.17K.110 However, for (a) and (c), �̂/kB is specified as

�̂/kB ' 6.7971K, because Eq. (D18) allows u ⇡ 0 (m/s) at T = Tc for the value.
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FIG. 37. Dependence of hn̄i/hNi on T . The solid curve corresponds to hn̄i/hNi that is evaluated

for hnic/hNi = 0.001 and �cUa = 0.171 (a0 = 0.0644) with the use of Eq. (B4).

rotons and is confirmed in Fig. 36. The dependence of hn̄i/hNi on T is confirmed in Fig. 37.

The contribution from rotons increases sharply near Tc. The largest value obtained from

the contribution at T = Tc can sensitively decrease for a small decrease in the magnitude

of �̂/kB. The behavior determined in the range T  Tc is di↵erent from that in the range

Tc < T . The largest value based on the contribution from rotons can be insensitive to a

decrease in the magnitude of �̂/kB in the range Tc < T .

Rotons may exist even for Tc < T based on the assumption that particles that carry small

momenta limited within the range 0  p < pmin contribute to the generation of rotons. The
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contributions from such rotons correspond to the dashed and single dotted curves found in

(c) and (d) in Fig. 36. They are evaluated via Eqs. (D34) and (D35).

The roton contribution exhibits a specific physical meaning if the final term in Eq. (620) is

subject to the contribution. At temperatures near Tc, hn̄i particles are extremely fewer than

the hNi�hn̄i particles with large momenta satisfying pmin < p < 1. Despite 0 < hn̄i/(hNi�

hn̄i) ⌧ 1, the hn̄i particles with small momenta satisfying 0  p < pmin maintain the form

of microscopic ensembles where particles are located near each other with being assisted by

the attractive interparticle forces. The hn̄i particles remain as the microscopic ensembles

without mixing homogeneously with the hNi � hn̄i particles. The microscopic ensembles

exist while being included within the body of a macroscopic ensemble of the hNi � hn̄i

particles. The microscopic ensembles allow the generation of characteristic excitation states

corresponding to rotons. Thus, if the contribution of the hn̄i particles is exhibited by the

roton contribution, the sharp increase of CV near Tc due to the roton contribution suggests

that phase separation is maintained at a microscopic level. If temperatures are near Tc, the

aforementioned type of a phenomenon should be induced even above Tc. This is suggested

by the behavior of the thick curves found in (c) and (d) in Fig. 36. According to results

of measurements, the characteristic excitation states remain as rotons at temperatures near

Tc.102

F. Conclusions

Two quasiclassical expressions of the partition function for a Bose fluid system indicate

a dependence of the specific heat on T that exhibits a discontinuity at a temperature Tc.

This implies that the maximum of the specific heat at T = lim�!0(Tc � �) di↵ers from

that at T = lim�!0(Tc + �). The sum of the chemical potential µ and contribution Ua

of attractive forces between particles reaches zero at T = Tc. The dependence of Tc on

repulsive interactions between particles is expressed by a simple equation. If the contribution

of the motion of particles with small momenta satisfying 0  p < pmin corresponds to the

contribution from rotons, the contribution sharply increases the specific heat near Tc. This

means that particles with small momenta satisfying 0  p < pmin cannot homogeneously mix

with particles with large momenta satisfying pmin < p < 1. Even in a classical fluid system,

mutually attractive forces between particles cannot allow particles with small momenta to
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be homogeneously mixed with particles that have large momenta. When particles with small

momenta and particles with large momenta coexist without being homogeneously mixed, two

di↵erent types of excitation states should be generated because of the contribution of the

hard-core potential that requires particles to be excluded from each other. In the Bose fluid

system, the interface that distinguishes the liquid phase from the gas phase can be formed;

it is not formed without the contribution of physical cluster formation. It is necessary to

adequately understand the relation between excitation states and the contribution of the

physical cluster formation.
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Appendix A: Summarized mathematics for Z
0

⌫/2
(µ̄) and Z⌫/2 (µ̄; ⌘)

pmin =

8
><

>:

0 (Tc < T ),
p

2m(Ua + µ+ ⌘/�) (T  Tc).

1. When pmin = 0 (µ̄  0, 0 < ⌫)

A function Z
0 involving the gamma function is defined as follows:

Z
0

⌫/2
(µ̄) ⌘

1X

k=1

exp(kµ̄)

k⌫/2
� (⌫/2) . (A1)

When µ̄ = 0 (T = Tc),

Z
0

⌫/2
(0) = ⇣(⌫/2)�(⌫/2), (A2)

where the Riemann zeta function ⇣ is defined as ⇣(⌫) ⌘
P1

k=1
1/k⌫ . For 1 < ⌫, ⇣(⌫) is finite.

For ⌫  1, ⇣(⌫) diverges to +1. When |µ̄| is su�ciently close to zero, Z0

1/2
(µ̄) behaves as

Z
0

1/2
(µ̄) ⇡ � (1/2)

n
exp(µ̄) + |µ̄|

�1/2

h
� (1/2)� � (1/2, 3|µ̄|/2)

io
. (A3)
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2. When pmin 6= 0 (µ̄ � 0, 0 < ⌫)

A function Z involving the incomplete gamma function of the second type is defined as

follows:

Z⌫/2 (µ̄; ⌘) ⌘
1X

k=1

exp(kµ̄)

k⌫/2
� (⌫/2, k#)

= #
⌫/2

Z 1

1

t
⌫/2�1

e#t�µ̄ � 1
dt, (A4)

where # ⌘ �p
2

min
/(2m) = µ̄ + ⌘. Subsequently, rewriting the integrand t

⌫/2�1
/(e#t�µ̄

� 1)

allows Z to be expressed approximately in the integral form as follows:

Z⌫/2 (µ̄; ⌘) ⇡ #
⌫/2

Z 1

1

t
⌫/2�1

e#t � 1
dt+ #

⌫/2

Z
ts

1

�f(t, µ̄) dt

⇡ Z
(0)

⌫/2
(µ̄; ⌘) + #

⌫/2�S⌫/2 (ts, µ̄) , (A5)

where �f(t, µ̄), Z(0)

⌫/2
(µ̄; ⌘), and �S⌫/2(ts, µ̄) are defined as follows:

�f(t, µ̄) ⌘
t
⌫/2�1

e#t�µ̄ � 1
�

t
⌫/2�1

e#t � 1
, (A6)

Z
(0)

⌫/2
(µ̄; ⌘) ⌘

1X

k=1

1

k⌫/2
� (⌫/2, k#) , (A7)

�S⌫/2 (ts, µ̄) ⌘
1

2

sX

i=1

[�f(ti, µ̄) +�f(ti�1, µ̄)] (ti � ti�1), (A8)

respectively. Specifically, the value of ts should satisfy 0 < �f(ts, µ̄)/�f(t0, µ̄) ⌧ 1 (t0 = 1).

At µ̄ = 0, Eq. (A7) becomes equivalent to Eq. (A4). Based on Eq. (A7), increases in µ̄

decrease the value of Z(0)

⌫/2
for ⌫ = 3 and ⌫ = 5. The behavior of Z(0)

⌫/2
is shown also by

Eq. (A9).

In Eq. (A6), the second term on the right-hand side decreases with increases in µ̄ at

t = 1. However, at t = 1, the first term is independent of an increase in µ̄ and remains large.

Thus, �f(t, µ̄) increases with increases in µ̄. This allows Z⌫/2 to increase with increases in

µ̄, although Z
(0)

⌫/2
decreases.

In Eq. (A7), the summation is approximated by an integration. An approximation of
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Z
(0) is then obtained for either ⌫ = 3 or ⌫ = 5 as

Z
(0)

⌫/2
(µ̄; ⌘) ⇡ ⇣ (⌫/2)�(⌫/2)� �(⌫/2,#)�

Z 1

1

(t+ 1/2)�⌫/2
�(⌫/2, (t+ 1/2)#) dt

= ⇣(⌫/2)�(⌫/2)� �(⌫/2,#)�
2

⌫ � 2

✓
3

2

◆�⌫/2+1

�(⌫/2, 3#/2)

�
2

⌫ � 2
#
⌫/2�1

e
�3#/2

, (A9)

where �(⌫/2, z) =
R

z

0
t
⌫/2�1

e
�t dt (i.e., the incomplete gamma function of the first type).

Similarly, an approximate expression of Z(0) for ⌫ = 1 is obtained and avoids the diver-

gence of ⇣(⌫/2) as follows:

Z
(0)

1/2
(µ̄; ⌘) ⇡ � (1/2,#) +

Z 1

1

(t+ 1/2)�1/2� (1/2, (t+ 1/2)#) dt

= 2#�1/2
e
�3#/2 + � (1/2,#)� 61/2� (1/2, 3#/2)) . (A10)

The behavior of �(1/2, k#) is exhibited by �(1/2, k#) = (k#)�1/2
e
�k#[1+

P1
n=1

(k#)�n
Q

n

i=1
(1/2�

i)]. Thus, Eq. (A10) reveals that Z(0)

1/2
(µ̄; ⌘) given by the sum in Eq. (A7) remains extremely

large without diverging to infinity, although
P1

k=1
k
�⌫/2 diverges to infinity for ⌫ = 1.

When µ̄ = 0, the use of Eq. (A9) allows Z⌫/2 to be expressed in the following approximate

form:

Z⌫/2 (0; ⌘) ⇡ ⇣ (⌫/2)� (⌫/2)�
2

⌫ � 2
⌘
(⌫�2)/2 (for 0 < ⌘ ⌧ 1 and ⌫ = 3, 5). (A11)

3. Estimates of two types of integrals

a. Type I

Z 1

pmin

p
⌫

1

exp(�p2/(2m)� µ̄)� 1
dp

=

8
><

>:

1

2
(2m/�)(⌫+1)/2

Z
0

(⌫+1)/2
(µ̄) (pmin = 0 and 0  ⌫),

1

2
(2m/�)(⌫+1)/2

Z(⌫+1)/2 (µ̄; ⌘) (pmin 6= 0 and 0  ⌫).
(A12)
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b. Type II

Z 1

pmin

p
2 ln

⇥
1� exp(��p

2
/(2m) + µ̄)

⇤
dp

=

8
>>><

>>>:

�
1

3

✓
2m

�

◆3/2

Z
0

5/2
(µ̄) (pmin = 0),

�
1

3

✓
2m

�

◆3/2 �
(µ̄+ ⌘)3/2 ln

�
1� e

�⌘
�
+ Z5/2 (µ̄; ⌘)

 
(pmin 6= 0).

(A13)

4. Derivatives

@

@µ̄
Z

0

⌫/2
(µ̄) =

⇣
⌫

2
� 1

⌘
Z

0

(⌫�2)/2
(µ̄) (pmin = 0 and 3  ⌫), (A14)

@

@µ̄
Z⌫/2 (µ̄; ⌘) =

⇣
⌫

2
� 1

⌘
Z(⌫�2)/2 (µ̄; ⌘) (pmin 6= 0 and 3  ⌫), (A15)

@

@⌘
Z⌫/2 (µ̄; ⌘) =

�1

e⌘ � 1
(µ̄+ ⌘)(⌫�2)/2 (pmin 6= 0 and 3  ⌫). (A16)

Appendix B: Estimations of two quantities @Ur/@⇢ and ⌘

1. Derivative @Ur/@⇢ related to repulsive e↵ects caused by hard cores of

particles

Based on the relation hNi = (@��1 lnQ(µ)
/@µ)�, hNi for Tc < T is estimated as

hNi =
2

⇠T
Z

0

3/2
(µ̄) . (B1)

The value of µ̄ for Tc < T is estimated from Eq. (B1) when hNi is given. At T = Tc, it must

satisfy µ̄ = 0.
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At T = Tc, Eq. (B1) is modified as ⇠T = 2�(3/2)⇣(3/2)/hNi. If this expression for ⇠T is

substituted into Eq. (601), a formula is obtained as

V
c

e↵
= A�

3/2

c
hNi, (B2)

where V
c

e↵
⌘ Ve↵ |T=Tc and A ⌘

p
⇡(2s)�1(2⇡h̄2

/m)3/2[�(3/2)⇣(3/2)]�1. Additionally,

Eq. (B2) implies that the temperature Tc depends on V
c

e↵
under the condition that hNi

remains constant.

From Eqs. (589) and (B2), Eq. (590) is obtained, and the di↵erentiation of Eq. (590) with

respect to ⇢ yields the following expression:

@Ur

@⇢
= �(⇢�c)

�1

⇢
1�

1

2
e
��cUr +


3

2

✓
1�

1

2
e
��cUr

◆
+ �cUr

�
⇢�

�1

c

@�c

@⇢

�
. (B3)

Based on Eq. (C4), @�c/@⇢ is positive. Hence, Eq. (B3) requires @Ur/@⇢ to be negative.

This is consistent with Eq. (C6) because @Ur/@V = �(⇢/V )@Ur/@⇢ is satisfied at constant

hNi. At 20 bar, the transition temperature for liquid 4He is 1.928K.99 In this case, @Ur/@⇢

should become negative.

2. Estimation of coe�cient ⌘

Based on the relation hNi = (@��1 lnQ(µ)
/@µ)�,pmin , hNi for T  Tc is estimated as

hNi = hn̄i+
2

⇠T
Z3/2 (µ̄; ⌘) . (B4)

Given that hNi remains constant, when the temperature increases, hn̄i reaches a minimum

at T = Tc. The value of (2/⇠T )Z3/2(µ̄; ⌘) then attains a maximum. Conversely, decreases in

the temperature from Tc increase hn̄i because (2/⇠T )Z3/2(µ̄; ⌘) decreases. Then, the value

of µ̄ should not significantly increase because an increase in µ̄ increases Z3/2(µ̄; ⌘) based on

Eq. (A5). Thus, if hNi is constant, the condition 0  µ̄ ⌧ 1 should always be satisfied for

T  Tc. This simplifies the estimation of hn̄i, and hn̄i is determined as independent of Ua.

Under the condition that hNi remains constant, the value of hNi evaluated at T = Tc

from Eq. (B4) should be equal to that evaluated at T = Tc from Eq. (B1). This exhibits

lim�!0hNi|T=Tc+� = lim�!0hNi|T=Tc��. Re-writing the relation yields the following relation

between hn̄i|T=Tc and ⌘:

0 = hn̄ic �
2
p
⇡
sV

c

e↵

✓
m

2⇡h̄2
�c

◆3/2 1X

k=1

1

k3/2
� (3/2, k⌘) . (B5)
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In Eq. (B5), the summation is approximated by an integration and yields the following

expression:

1X

k=1

1

k3/2
� (3/2, k⌘) ⇡ � (3/2, ⌘) +

Z 1

1

(t+ 1/2)�3/2
� (3/2, ⌘(t+ 1/2)) dt

= � (3/2, ⌘) + (8/3)1/2 � (3/2, 3⌘/2) + 2⌘1/2e�3⌘/2
⇡ 2⌘1/2. (B6)

In Eq. (B6), the behavior of the incomplete gamma function for 0 < � ⌧ 1 is approximated

by �(3/2, �) ⇡ 2�3/2/3. Finally, if Eqs. (B2) and (B6) are considered in Eq. (B5), the value

of ⌘ is estimated as follows:

⌘ ⇡
⇡

16


⇣(3/2)

hn̄ic

hNi

�2
, (B7)

although the value of hn̄ic is unknown. Additionally, if the value of ⌘ is known at constant

hNi, Eq. (B4) exhibits the dependence of hn̄i on T .

The derivative @µ̄/@⌧ is estimated by di↵erentiating Eq. (B4) with respect to a variable

⌧ corresponding to either � or V , and the derivative @µ̄/@⌧ is expressed as follows:

@µ̄

@⌧
=

⇠T

Z1/2(µ̄; ⌘)


@hNi

@⌧
�

@hn̄i

@⌧
+

2

⇠
2

T

Z3/2(µ̄; ⌘)
@⇠T

@⌧
+

2

⇠T

@⌘

@⌧

p
µ̄+ ⌘

e⌘ � 1

�
. (B8)

To obtain the derivative @⌘/@V occurring in Eq. (618), the expression obtained from Eq. (B4)

at T = Tc must be di↵erentiated with respect to V . Subsequently, if @hn̄ic/@V in the

derivative thus obtained is substituted by @hn̄ic/@V obtained by di↵erentiating Eq. (B7)

with respect to V , then @⌘/@V is estimated. When hNi is constant, @⌘/@V is expressed as

follows:

@⌘

@V
= �⌘

1/2
Z3/2(0; ⌘)


⇠TchNi

p
⇡⇣(3/2)

�
⌘

e⌘ � 1

��1

V
c

e↵

@V
c

e↵

@V
. (B9)

3. Contribution of particles with small momenta in temperature range Tc < T

For Tc < T , the number hn̄iI of particles with momenta 0  p  pmin is given as follows:

hn̄iI =
2

⇠T

1X

k=1

e
kµ̄

k3/2
�(3/2, k⌘�/�c). (B10)

If the number of particles with momenta pmin < p < 1 is denoted as hn̄iII , Eq. (B1) is

rewritten as follows:

hNi = hn̄iI + hn̄iII , (B11)
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where

hn̄iII =
2

⇠T
Z̄3/2(µ̄, ⌘�/�c) (B12)

with

Z̄⌫/2(µ̄, ⌘�/�c) ⌘
1X

k=1

e
kµ̄

k⌫/2
�(⌫/2, k⌘�/�c), (0 < ⌫). (B13)

When 0 < ⌘�/�c ⌧ 1 is satisfied, an approximate relationship between Z̄⌫/2(µ̄, ⌘�/�c) and

Z
0

⌫/2
(µ̄) is given as follows:

Z̄⌫/2(µ̄, ⌘�/�c)� Z
0

⌫/2
(µ̄) ⇡ �

2

⌫

(⌘�/�c)⌫/2

e�µ̄+⌘�/�c � 1
, (0 < ⌫). (B14)

If the approximation given by Eq. (B14) is considered, the derivative (@Z̄⌫/2/@�)V is given

as follows:
✓
@Z̄⌫/2(µ̄, ⌘�/�c)

@�

◆

V

⇡

✓
⌫

2
� 1

◆
Z

0

(⌫�2)/2
(µ̄)

@µ̄

@�
�

1

�

(⌘�/�c)⌫/2

e�µ̄+⌘�/�c � 1
, (0 < ⌫). (B15)

Furthermore, Eq. (B14) yields an approximate expression for hn̄iI , i.e.,

hn̄iI ⇡
4⌘3/2

3⇠Tc

1

e�µ̄+⌘�/�c � 1
. (B16)

Eq. (B16) allows the di↵erentiation of hn̄iI with respect to � to be approximately given as

follows: ✓
@hn̄iI

@�

◆

V

⇡
hn̄iI

1� eµ̄�⌘�/�c

✓
@µ̄

@�
�

⌘

�c

◆
. (B17)

If the contribution of the hn̄iI particles to the internal energy E and the contribution of the

hn̄iII particles to E are denoted as EI and EII , respectively, then EI is given as follows:

EI = E � EII . (B18)

For 0 < vf/Ve↵ ⌧ 1, Eq. (600) allows EII to be approximately estimated as

EII ⇡
2

�⇠T
Z̄5/2(µ̄, ⌘�/�c)�

2

�⇠T
(�Ua � �Ur)Z̄3/2(µ̄, ⌘�/�c). (B19)

If Eqs. (604), (B1), and (B15) are considered, Eq.(B19) allows the derivative (@EII/@�)V to

be approximately given as follows:
✓
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◆
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2
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◆
. (B20)
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Appendix C: E↵ective volume Ve↵ caused by hard cores of particles

1. Derivatives @Ve↵/@V and @Ur/@V

Di↵erentiating Eq. (589) with respect to V yields @Ve↵/@V for 0 < vf/V ⌧ 1 as follows:
✓
@Ve↵

@V

◆

�

�
Ve↵

V
⇡ �

Ve↵

V

✓
1 +

Ve↵

V

◆
V �

@Ur

@V
. (C1)

Di↵erentiating Eq. (589) with respect to � yields @Ve↵/@� for 0 < vf/V ⌧ 1 as
✓
@Ve↵

@�

◆

V

⇡ �Ve↵Ur

✓
1 +

Ve↵

V

◆
. (C2)

At T = Tc, Eq. (589) is expressed as �cUr ⇡ ln 1

2
(1 + V/V

c

e↵
) given that 0 < vf/V ⌧ 1.

If the relation is di↵erentiated with respect to V , a relation between @V
c

e↵
/@V and @Ur/@V

is obtained for constant hNi as follows:

@V
c

e↵

@V
⇡

V
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✓
1 +

V
c

e↵

V

◆✓
⇢
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Ur � V �c
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◆
. (C3)

Subsequently, Eq. (C1) at T = Tc should be equivalent to Eq. (C3) . Hence, ⇢@�c/@⇢ must

satisfy

⇢
@�c

@⇢
⇡

1

Ur

✓
1 +

V
c

e↵

V

◆�1

. (C4)

If Eq. (B2) is di↵erentiated with respect to V at constant hNi, then the relation given by

Eq. (C4) allows @V c

e↵
/@V to be expressed as follows:

@V
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3

2�cUr
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✓
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c
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. (C5)

The use of Eq. (C5) allows @V
c

e↵
/@V to be eliminated from the formula obtained from

Eq. (C1) at T = Tc, and the following formula is obtained:

V �c
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@
2
Ur/@V

2 is obtained from di↵erentiating Eq. (C6) with respect to V . If Eq. (C5) is con-

sidered, then Eq. (614) allows (@µ̄/@V )Z0

1/2
(µ̄)

��
T=Tc

to be estimated as follows:
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268



2. Other volumes

Based on Eq. (589), the ratio vf/V that is neglected in the above expressions is given as

follows:
vf

V
=

1

2

✓
Ve↵

V
�

1

2e�Ur � 1

◆
2e�Ur � 1

e�Ur � 1
. (C8)

The ratio ve↵/V is given as follows:

ve↵

V
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3

2

✓
Ve↵

V
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1

2e�Ur � 1

◆
1

e�Ur � 1
. (C9)

Appendix D: Contributions from quasiparticles

1. Estimation of parameter u for free energy caused by rotons and phonons

The contributions from rotons and phonons to the free energy are estimated given a

specific phase involving the e↵ect of anisotropy106, and are expressed by

F� =
1

�

Z
p̂max

0

Z
⇡

0

2⇡V p̂
2 dp̂ sin ✓ d✓

(2⇡h̄)3
ln {1� exp [�� ("̂�(p̂)� p̂u cos ✓)]} (� = 1, 2), (D1)

where

"̂�(p̂) =

8
><

>:

�̂+
1

2µ̂
(p̂� p0)

2 (� = 1 for rotons),

cp̂ (� = 2 for phonons).

(D2)

The two parameters u and p̂max on which F� (� = 1, 2) depends are unknown. Four

parameters µ̂, p0, �̂, and c are known for liquid helium (4He): c = 238m/s, �̂/kB =

8.712K, p0/h̄ = 1.913 ⇥ 1010 m�1, and µ̂ = 0.1608mHe (mHe = 4He atomic mass).111 The

parameter u is given as u = |u| and must satisfy the inequality 0 < u  vmax because the

expectation value of n̂�(p̂) of quasiparticles with the momentum p̂ (p̂ = |p̂|) is given by

hn̂�(p̂)i = {exp[�("̂�(p̂) � p̂ · u)] � 1}�1 (� = 1, 2), which is always positive. Thus, the

quantity "̂�(p̂) satisfies the two relations d"̂�/dp̂|p̂=p̂m = vmax and "̂�(p̂m) = vmaxp̂m, which

require vmax to be given for � = 1 as vmax = (p0/µ̂)[(1 + 2µ̂�̂/p
2

0
)1/2 � 1] ⇡ �̂/p0 (for

instance, µ̂�̂/(2p2
0
) ⇡ 0.016). Therefore, the inequality 0  u  vmax is equivalent to three

inequalities 0  p0u/�̂  1, 0  µ̂u
2
/(2�̂)  µ̂�̂/(2p2

0
), and 0  µ̂u/p0  µ̂�̂/p

2

0
(for

example, µ̂�̂/p
2

0
⇡ 0.031).
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It is reasonable to estimate the value of u without considering the contribution from

phonons.1,106,112 Equation (D1) is expressed as follows:

F� = �
V

(2⇡)2h̄3
�2

✓
1

u

◆ 1X

k=1

1

k2

Z
p̂max

0

dp̂ p̂e�k�"̂�(p̂)
�
e
k�up̂

� e
�k�up̂

�
(� = 1, 2). (D3)

For � = 1, exp[�k�"̂�(p̂)] is expressed as follows:

e
�k�"̂1(p̂) = e

�k��̂ exp


�

1

2�2

k

(p̄� 1)2
�
, (D4)

where

�k ⌘

s
µ̂

k�p
2

0

=
�1

k1/2
, (D5)

p̄ ⌘ p̂/p0. (D6)

The inequality 0 < �k ⌧ 1 is then satisfied. For instance, �1 satisfies 0 < �1  0.088 at

� = 3.34 ⇥ 1022 J�1. In Eq. (D4), the Gaussian function is finite for |p̄ � 1| ⌧ 1. The

inequality e
�k��̂

⌧ 1 holds even for k = 1. The aforementioned facts allow the exponential

functions in Eq. (D3) to be approximated as finite power series in k�up̂ when u remains

small.

For arbitrary values of �, the first and second derivatives of F1 exactly satisfy the following

expression:

� lim
u!0

u
�1
V

�1
@F1

@u
= � lim

u!0

V
�1

@
2
F1

@u2
. (D7)

The term�V
�1(@2

F1/@u
2) contributes as the mass density ⇢m of the fluid,106 and�u

�1
V

�1(@F1/@u)

contributes as the mass density of the normal component ⇢(n)m of the fluid.1,106,112 Hence, if

the ratio of the mass density of the non-normal component to the mass density of the fluid

is denoted by fr, then it is estimated as

fr = 1�
u
�1
V

�1 (@F1/@u)

V �1 (@2F1/@u
2)

. (D8)

Additionally, although the relationship between fr and T for liquid helium is obtained from

experimental data,109 it can be made to correspond to the ratio hn̄i/hNi obtained from

Eq. (B4).
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Approximating the exponential functions in Eq. (D3) as finite power series in k�up̂ allows

fr to be estimated as follows:

fr ⇡
2

3
(�p0u)

2

1X

k=1

k
3

Z
p̄max

0

dp̄ p̄6e�k�"̂1(p̂)

"
10

3

1X

k=1

k

Z
p̄max

0

dp̄ p̄4e�k�"̂1(p̂)

+ (�p0u)
2

1X

k=1

k
3

Z
p̄max

0

dp̄ p̄6e�k�"̂1(p̂)

#�1

. (D9)

Equation (D9) gives a simple relation between u and fr for small u, and it indicates that u

decreases when fr decreases.

Without approximation, the derivatives of F1 satisfy the following general equation:

⌫
@
(⌫�1)

F1

@u(⌫�1)
+ u

@
(⌫)
F1

@u(⌫)
= (�1)⌫
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(2⇡)2h̄3
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k=1

(k�p0)⌫
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exp[�k�(�̂+ ⌧(u))]I(⌫+1)

k
(u, p̄max; �)

+ (�1)⌫+1 exp[�k�(�̂+ ⌧(�u))]I(⌫+1)

k
(�u, p̄max; �)

o
(⌫ = 1, 2, 3, . . . ).

(D10)

F1 also satisfies the equation for ⌫ = 0. However, the first term for ⌫ = 0 is equal to zero.

In Eq. (D10), ⌧(u) and I⌫(u, p̄max; �) are defined as follows:

⌧(u) ⌘ p0u� µ̂u
2
/2, (D11)
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2
,
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◆�

(⌫ = 1, 2, 3, . . . and p̄max � �q(u)). (D12)

In the above, q(u) is defined as follows:

q(u) ⌘ �1 + (µ̂/p0)u. (D13)

Additionally, the quantity �k given by Eq. (D5) is very small. This implies that 1/(2�2

k
)

is su�ciently large such that I(⌫)
k

(u, p̄max; �) is independent of p̄max. Hence, I
(⌫)

k
(u, p̄max; �) is

approximated as I(⌫)
k

(u, p̄max; �) ⇡ Ī
(⌫)

k
(u; �). Ī(⌫)

k
(u; �) is given by the following expression:
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(D14)
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The use of Eq. (D14) allows Eq. (D10) to be modified as

⌫
@
(⌫�1)

F1

@u(⌫�1)
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@
(⌫)
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o
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(D15)

where

L
(6�⌫�n)(u, �̂; �) ⌘

1X

k=1

e
�k�(�̂+⌧(u))

k(6�⌫�n)/2
. (D16)

If the relations �V
�1(@2

F1/@u
2) = ⇢m and �u

�1
V

�1(@F1/@u) = ⇢
(n)

m are considered,106

two equations that are obtained for ⌫ = 1 and ⌫ = 2 from Eq. (D15) can form a system of

equations to estimate u and �̂/kB as parameters dependent on T . The two equations are

expressed as follows:

H1(u, �̂; �) ⌘ u
3(1� fr) + Ā
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= 0, (D17)
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where fr satisfies fr = 1� ⇢
(n)

m /⇢m and Ā is defined by

Ā ⌘
�1p

2

0

(2⇡)3/2h̄3
�2⇢m

. (D19)

The derivatives @u/@� and @�̂/kB/@� are obtained from di↵erentiating Eqs. (D17) and

(D18). Despite this, the assumption that �̂/kB is constant allows @u/@� to be estimated

from one of the two derivatives. For example, from the derivative of Eq. (D18),

@u

@�
= �

@H2

@�

✓
@H2

@u

◆�1

, (D20)
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where
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(D21)

2. Contributions from rotons and phonons to internal energy

The contribution E� (� = 1, 2) from quasiparticles to the internal energy is estimated

from the relation E� = (@(�F�)/@�)u,p̄max � u(@F�/@u)�,p̄max . The contribution E� depends

on at least four parameters — u, �, V , and p̄max — and should be expressed as E� =

E�(u, �, V ; p̄max), which is estimated from the free energy F� as follows:

E�(u, �, V ; p̄max) =
V p
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(D22)

Despite the aforementioned description, the contribution E1 from rotons should be expressed

as E1(u, �̂, �, V ; p̄max) because the contribution is given without any approximation by

E1(u, �̂, �, V ; p̄max) =
V p
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. (D23)
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In the range where p̄max > �q(u) is satisfied, E1(u, �̂, �, V ; p̄max) is approximately inde-

pendent of p̄max due to 0 < �k ⌧ 1. The behavior of E1(u, �̂, �, V ; p̄max) is expressed as

E1(u, �̂, �, V ; p̄max) ⇡ Ê1(u, �̂, �, V ). If Eq. (D14) is considered in Eq. (D23), Ê1(u, �̂, �, V )

is given as follows:
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Di↵erentiating E1 with respect to � at constant V and constant �̂ yields the following

expression:
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where @u/@� is estimated from Eq. (D20). The other derivatives in Eq. (D25) are obtained

from the di↵erentiation of Eq. (D24) as follows:
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Additionally, the phonon contribution E2(u, �, V ; p̄max), which is estimated from the free

energy F2 without any approximation, is given as follows:

E2(u, �, V ; p̄max) =
V p
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where
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For u/c ⌧ 1, the phonon contribution E2 becomes insensitive to the value of u. This implies

that the behavior of E2 is not governed by the e↵ects of anisotropy.

If the sum
P

↵⇤hn↵⇤i"↵⇤ in Eq. (602) is the contribution from quasiparticles, then it should

be given as
P

↵⇤ "↵⇤hn↵⇤i = E1(u, �̂, �, V ; p̄max) + E2(u, �, V ; p̄max). However, E2 is ignored

because the contribution from phonons is significantly smaller than that from rotons for

0 < (Tc � T )/T ⌧ 1.

3. Estimation of the number of rotons in temperature range Tc < T

Based on Eq. (B10), the momenta of the hn̄iI particles remains in the range 0  p  pmin

even for Tc < T . The hn̄iI particles can contribute to the generation of quasiparticles, even if

the dependence of F1 on u disappears. Given the aforementioned possibility, the contribution

of the hn̄iI particles to the internal energy should be estimated as the contribution EI from

quasiparticles for u = 0. The total number Nroton(p̄max, �) of rotons is given for u = 0 as

follows:
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Nroton(p̄max, �) must be limited by the value of hn̄iI . If hn̄iI decreases toward zero,

Nroton(p̄max, �) should decrease toward zero. This suggests that p̄max decreases with de-

creasing hn̄iI , and it allows ensuring that the assumption that 0  p̄max  �q(u)
��
u=0

is

satisfied for Tc < T . Furthermore, two assumptions are considered to simplify estimations.

The first corresponds to the assumption that Nroton(p̄max, �) = c0hn̄iI is approximately sat-

isfied with c0 being the proportionality constant. The other corresponds to the assumption
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that p̄max � 1 = 0 is satisfied at T = Tc. The aforementioned two assumptions require

c0 = Nroton(p̄
(c)

max, �c)/hn̄i
(c)

I
to be satisfied with hn̄i

(c)

I
⌘ hn̄iI

��
T=Tc

and p̄
(c)

max ⌘ p̄max|T=Tc = 1.

Eq. (D30) allows Nroton(p̄max, �) to be approximately given for u = 0 and 0  p̄max  1

as

Nroton(p̄max, �) ⇡

p
2⇡V p

3

0
�1

(2⇡)2h̄3

h
2�2

1
L̂

(3)(�̂, �, p̄max)� 23/2�1L̂
(2)(�̂, �, p̄max)

+L̂
(1)(�̂, �, p̄max)

i
, (D31)

where

L̂
(⌫)(�̂, �, p̄max) =

1X

k=1

e
�k��̂

k⌫/2
�


⌫

2
,
(p̄max � 1)2

2�2

k

�
. (D32)

Therefore, the relation Nroton(p̄max, �) = c0hn̄iI allows p̄max to be estimated. Furthermore,

the relation allows the derivative @p̄max/@� to be estimated as follows:

✓
@p̄max

@�

◆

V

=


c0

✓
@hn̄iI

@�

◆

V

+
�1

2�

✓
@Nroton

@�1

◆

�p̄max

�

✓
@Nroton

@�

◆

�1p̄max

�

⇥

✓
@Nroton

@p̄max

◆

�1�

��1

. (D33)

In Eq. (D33), the derivative
�
@hn̄iI/@�

�
V
is given by Eq. (B17).

For Tc < T , an approximate contribution E1(�̂, �, V ; p̄max) to the internal energy is

estimated by considering 0 < �k ⌧ 1, u = 0, and p̄max  1. Subsequently, the use of Eq.

(D22) allows the approximate contribution to be given as follows:

E1(�̂, �, V ; p̄max) ⇡

p
2V p

5

0
�1

(2⇡)2h̄3
µ̂

⇢
2�4

1
L̂

(5)(�̂, �, p̄max)� 2
p

2�3

1
L̂

(4)(�̂, �, p̄max)

+�
2

1

⇣
1 +

2µ̂�̂

p
2

0

⌘
L̂

(3)(�̂, �, p̄max)� 2
p

2�1

µ̂�̂

p
2

0

L̂
(2)(�̂, �, p̄max)

+
µ̂�̂

p
2

0

L̂
(1)(�̂, �, p̄max)

�
. (D34)

The di↵erentiation of E1(�̂, �, V ; p̄max) at constant V and constant yield the following ex-

pression:

✓
@E1

@�

◆

V

=
@p̄max

@�

✓
@E1

@p̄max

◆

�

+

✓
@E1

@�

◆

p̄max

. (D35)

Therefore, the use of Eqs. (D33) and (D34) allows the derivative (@E1/@�)V to be estimated.
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