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I. INTRODUCTION

In an ensemble of simple particles exemplifying atoms or molecules, which form a fluid,

inhomogenieties can occur, because the particles can interact with each other via attractive

forces and repulsive forces. At extremely low temperature, the particles can move even

coherently. Certainly, the ensemble cannot be inhomogeneous, if the following two relations

are satisfied:

(1) The distribution of particles in a microscopic volume �V located at ra cannot di↵er

from the distribution of particles in the microscopic volume �V located at rb ( 6= ra).

(2) The distribution of momenta of particles in a microscopic volume �V located at ra

cannot di↵er from the distribution of momenta of particles in the microscopic volume �V

located at rb ( 6= ra).

If factors that prevent the ensemble from becoming homogeneous become apparent, the

occurrence of interesting phenomena can be apparent. The factors can a↵ect behaviors of

fluids and configurations of particles. One of the factors is the formation of physical clusters.

For an ensemble of particles exemplifying atoms or molecules, the liquid phase coexists

with the gas phase at the temperatures between the triple point and the critical point. At

the temperatures, the density of particles in the liquid phase is much higher than that in

the gas phase, even if the portion in the liquid phase and the other portion in the gas phase

are in equilibrium. In necessity, the compressibility in the liquid phase is much smaller than

that in the gas phase. Then, it is inevitable to consider a contribution of something that

generates the di↵erence between the portion in the liquid phase and the other portion in

the gas phase. A contribution of the formation of physical clusters should be considered to

allow the liquid phase to be distinguished from the gas phase.

Physical clusters can be formed even in the gas phase if the temperature of a system

is near the liquid-vapor critical point. Particles constituting the system interact with each

other via attractive forces between them. The system include particles that can freely

individually move because the contribution of the relative kinetic energy between particles

of each pair exceed the contribution of an attractive force acting between them. The system

include also other particles that cannot freely move for each other because the contribution

of the attractive force acting between particles of each pair exceed the contribution of the

relative kinetic energy between them. The particles that cannot freely move for each other
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can contribute to the formation of physical clusters.

At least attractive forces between particles enable the particles to be located near each

other. Repulsive forces between particles enable the particles to be excluded from each

other. The strength of each of attractive forces and that of each of repulsive forces depend

on the mean inter-particle distance. The formation of physical clusters depends at least on

attractive forces between particles, repulsive forces between them, the mean inter-particle

distance, and the degree of movements of particles. Their formation can a↵ect features of a

fluid system. If contributions of attractive forces between particles are su�ciently small, the

formation of ensembles of particles being located near each other and moving coherently can

allow generation of specific excitation states at extremely low temperatures. The formation

of ensembles of particles moving coherently changes thermodynamic properties of a quantum

fluid system.

For a classical fluid, a basic idea for estimating the formation of physical clusters was

given by Hill1. A useful method for analyzing the formation of physical clusters via an

integral equation was established by Coniglio at al2. The method allows the Ornstein-Zernike

equation to be split into two integral equations. The method allows the pair correlation

function also to be sprit into two correlation functions. One of the two correlation functions

is called the pair connectedness. One of the two integral equations is the integral equation

for the pair connectedness. The integral equation for the pair connectedness is an equation

for analyzing physical clusters and it has enabled many studies on o↵-lattice percolation of

physical clusters to proceed.

The mathematical structure of the integral equation connecting with physical clusters

is the same as that of the Ornstein- Zernike equation. Hence, it is necessary to solve the

integral equation with a specific closure. The closure was extracted from the Percus-Yevick

approximation. The relation between the Percus-Yevick approximation and the mean spher-

ical approximation allowed a simple closure to be obtained. The use of the simple closure

allows the contribution of physical clusters to the structure of particle distribution to be

revealed. Moreover, the use of the simple closure allows the contribution of physical cluster

formation to thermodynamic properties to be simply known. Its use enables structures of

physical clusters to to be revealed. The structure of the distribution of galaxies in the uni-

verse is known as the structure of physical clusters of galaxies. Then, it is revealed that the

structure is fractal. In a specific medium, the distribution of charged particles has a fractal
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structure. The use of the pair connectedness allows the fractal structure to be revealed.

II. FLUID SYSTEMS INCLUDING PHYSICAL CLUSTERS

A. A Classical Fluid System of N Particles

For a classical fluid system of N particles with volume V , the partition fuction QN is

defined as

QN =
1

N !(2⇡h̄)3N

Z

V

dr1

Z

V

dr2 · · ·

Z

V

drN

Z 1

�1
dp1

Z 1

�1
dp2 · · ·

Z 1

�1
dpN exp[��HN ], (1)

where a coe�cient h̄ is the ratio of the Planck’s constant to 2⇡ and another coe�cient � is

defined as � ⌘ 1/kBT with Boltzmann’s constant kB and the temperature T of the system.

In Eq. (1), HN is given by

HN =
NX

i=1

p
2

i

2m
+ VN(r1, r2, · · · , rN), (2)

where m is the particle mass and pi is defined by pi ⌘ |pi| with the momentum pi of i

particle. For a fluid, VN(r1, r2, · · · , rN) in Eq. (2) can be expressed by using a pair potential

uij(rij) generating the attractive force between i particle located at ri and j particle located

at rj and the repulsive force between them as

VN(r1, r2, · · · , rN) =
NX

i<j

uij(rij), (3)

where rij is expressed the three-dimensional distance between i particle and j particle as

defined by

rij = |ri � rj|. (4)

The partition fuction QN allows the Helmholtz feer energy F to be given as

F = �kB lnQN . (5)

For the classical fluid system, QN is estimated as

QN =
1

N !

✓
m

2⇡h̄2
�

◆3N/2

ZN , (6)
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where

ZN =

Z

V

dr1

Z

V

dr2 · · ·

Z

V

drN exp[��VN(r1, r2, · · · , rN)]. (7)

The use of ZN can allow the probability density for particle 1 being at r1, particle 2 being

at r2, · · · , and particle N being at rN to be estimated as

1

ZN
exp[��VN(r1, r2, · · · , rN)].

Because the possible ways for choosing one particle fromN particles is given byN !/(N�1)!1!,

n
(1)1(r1)dr1 being the probability that one of the N particles is located in a volume element

dr1 at r1 is given as

n
(1)(r1)dr1 =

✓
N !

(N � 1)!1!

◆
dr1
ZN

Z

V

dr2

Z

V

dr3 · · ·

Z

V

drN exp[��VN(r1, r2, · · · , rN)]. (8)

If a fluid satisfies a situation where the distribution of particles in a volume element does

not depend on locations of the volume element,

n
(1)(r1) =

N

V
= ⇢. (9)

Similarly, if n(2)(r1, r2)dr1dr2 denotes the probability that a particle is located in a volume

element dr1 at r1 and another particle is located in a volume element dr2 at r2is given as

n
(2)(r1, r2)dr1dr2 =

✓
N !

(N � 2)!2!

◆
dr1dr2
ZN

Z

V

dr3

Z

V

dr4 · · ·

Z

V

drN exp[��VN(r1, r2, · · · , rN)].(10)

If a fluid satisfies a situation where the distribution of particles in a volume element maintains

independence of locations of the volume element on average,

n
(2)(r1, r2) = n

(2)(r12). (11)

The quantity n
(2)(r12) corresponds to the radial distribution function for a fluid system.

The pair correlation function g(r12), which is related to h(r12) = g(r12)� 1 with the corre-

lation function h(r12) that satisfies the Ornstein-Zernike equation, is related to the radial

distribution function as follows:

n
(2)(r12) = n

(1)
n
(1)
g(r12). (12)

ZN can be rewritten by using the Mayer f-function, which is useful for analyzing a fluid

based on an aspect that allows a fluid to be considered as an ensemble of pairs of particles.
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Then, ZN is given by

ZN =

Z

V

dr1

Z

V

dr2 · · ·

Z

V

drN

NY

i<j

(1 + fij)

=

Z

V

dr1

Z

V

dr2 · · ·

Z

V

drN
h
1 + (f12 + f13 + · · ·+ f1N)

+(f12f13 + f12f14 + · · ·+ f12f1N) + · · ·

+(f23f12 + f23f13 + · · ·+ f23f1N) + · · ·

+(f23f12f13 + f23f12f14 + · · ·+ f23f12f1N) + · · ·

+(f34f24f12+f34f24f13 + f34f24f14 + · · ·+ f34f24f1N) + · · ·

+(f34f23f24f12+f34f23f24f13 + f34f23f24f14 + · · ·+ f34f23f24f1N) + · · ·

i
, (13)

where the Mayer f-function fij is defined as

fij(rij) ⌘ e
��uij(rij) � 1. (14)

Hence, the f-function fij satisfies

fij(rij) = fji(rji),

lim
rij!0

fij(rij) = �1,

lim
rij!1

fij(rij) = 0.

The minimum of fij(rij) is �1. if i particle and j particle have hard cores, fij(rij) = �1

is satisfied in the region where the hard cores contribute to their interaction characterized

by uij(rij) = 1. The function fij(rij), however, is positive within the range where the

attractive force retains e↵ective strength, and it expresses the strength of the attractive

interaction in this range. The value of fij(rij) becomes zero outside the range in which

an attractive force between an i particle and a j particle retains e↵ective strength. If an

ensemble of particles is a fluid, it is possible to assume �1 < �uij(rij) at temperatures of

the system. The maximum of fij(rij) does not become a large value.

Eq. (13) indicates that ZN is the sum of the integrals of products of f -functions. This

means that the pair correlation function g(rij) also can be given as the sum of the integrals

of products of f -functions although the two coordinates specified by rij are not integrated

over.

Typical features of the integrals of products of f -functions are extracted from Eq. (13).

The integrals of fij for i and j satisfying i < j are identical. The integrals of f12f1j for j
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satisfying 3 < j are identical. The integrals of f12f1j for j satisfying 3 < j are identical.

However, the integral of f23f13 is not identical with each integral of f23f1j for j except j = 3.

Cases similar to the above can be found from integrals of other products of f -functions.

The integrals of products of f functions allow a specific image showing that two particles

specified by each f -function are linked mathematically by the f function. This image enables

an ensemble of particles to be considered as clusters that are formed from particle pairs linked

mathematically by f functions. Then, each f function forms a f bond that mathematically

links two particle.

In Eq. (13), f23f13, f23f12f13, f34f24f13, and f34f23f24f13, are found as specific products of

f -functions. The first product, f23f13, denotes that two f bonds link particle 1 and particle

2 via particle 3, as shown by a diagram symbolized by 1 $ 3 $ 2. The third product,

f34f24f13, denotes that particle 1 and particle 2 are linked via particle 3 and particle4 as

shown by a diagram symbolized by 1 $ 3 $ 4 $ 2, which forms one path of f bonds.

The second product, f23f12f13, denotes that particle 1 and particle 2 are linked through two

paths of f bonds as shown by a diagram symbolized by 1 $ 2 and 1 $ 3 $ 2. The fourth,

f34f23f24f13, denotes that particle 1 and particle 2 are linked through special two paths of

f bonds that form a diagram symbolized by 1 $ 3 $ 2 and 1 $ 3 $ 4 $ 2. Then, all

the paths of f bonds that connect particle 1 to particle 2 include particle 3 as a common

particle.

In the case of the pair correlation function g(r12) formed for the use of f functions, the

two coordinates labeled with 1 and 2 are not integrated over. The coordinates r1 and r2 that

are not integrated over are called the root points. The other coordinates that are integrated

over are called field points, and they are labeled 3, 4, · · · for distinguishing them from the

root points. Both the root points and the field points correspond to particle coordinates.

The pair correlation function g(r12) includes the integrals of products of f -functions

exemplified by the paths of f bonds corresponding to f23f13, f34f24f13, and f34f23f24f13

although the two coordinates labeled with 1 and 2 are not integrated over. A diagram

that is formed by all the paths of f bonds given for f34f23f24f13 include the coordinate

corresponding to particle 3. A diagram that is each of the paths of f bonds given for f23f13,

f34f24f13 also includes the coordinate corresponding to particle 3. As exemplified by these

cases, at least one common coordinate corresponding to a particle can be shared by each

path of f bonds that connect particle 1 to particle 2 in a diagram of f bonds. Then, the
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diagram of f bonds is called a nodal diagram, and the common coordinate is a nodal point.

The pair correlation function g(r12) includes also the integrals of products of f -functions

exemplified by the paths of f bonds corresponding to f23f12f13 although the coordinates 1

and 2 are not integrated over. In a diagram that is formed by all the paths of f bonds given

for f23f12f13, there is not a nodal point. As exemplified by this case, there is a diagram that

does not include nodal points. Each diagram of f functions without including nodal points

is a non-nodal diagram.

The pair correlation function g(r12) can be expressed in the form of a density expansion.22,23

Each term found in the form of the density expansion of g(r12) is formed by the integrals

of a product of f functions, although the two coordinates 1 and 2 corresponding to the

root points are not integrated over in each term. The other coordinates are integrated

over in each term. A diagram of f bonds which forms each term in the density expansion

corresponds to either a nodal diagram or a non-nodal diagram. According to the density

expansion, g(r12) can be given by the sum of the contribution of all the nodal diagrams and

the contribution of all the non-nodal diagrams.22,23 This demonstrates that the Ornstein-

Zernike equation being an integral equation, which should be satisfied by g(r12), is expressed

as the sum of the contribution N(r12) of all the nodal diagrams and the contribution c(r12)

of all the non-nodal diagrams. Thus, the use of the direct correlation function c(r12) being

the contribution of all the non-nodal diagrams allows the Ornstein-Zernike equation to be

expressed as

h(r12) = c(r12) +N(r12), (15)

where the contribution of all the nodal diagrams can be estimated by

N(r12) = ⇢

Z

V

c(r13)h(r32)dr3 (16)

with

h(r12) = g(r12)� 1. (17)

The paths of f -bonds forming each nodal diagrams and the paths of f -bonds forming

each non-nodal diagrams both allow for propagating e↵ects of the behavior of a particle

corresponding to a root point to the other particle corresponding to the other root point.
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An ensemble of particle pairs which are specified by the f -functions forming a product in

the density expansion is regarded as an ensemble of particle pairs linked by the f -bonds.

Since this ensemble is a mathematical cluster,23 it cannot simply correspond to a physical

cluster.

B. Contributions of physical clusters

1. Phenomena dependent on the formation of physical clusters

A fluid system can include particle pairs of which each is characterized as a pair formed by

two particles interacting in a situation in which the contribution of the mutually attractive

force between them exceeds the contribution of their relative kinetic energy. Physical clusters

are formed by these particle pairs.1 Properties of the fluid system should be transformed

by the development of physical clusters. If their development makes large physical clusters

occur, it should participate in various phenomena involving phase behavior.

In a fluid system consisting of molecules, inhomogeneity that is generated as the density

fluctuations8,9 near the liquid-vapor critical points should be caused by the formation of

large physical clusters. Physical clusters can allow the density fluctuations to be enhanced

in a fluid being in the gas state. The degree of the density fluctuations reaches the maximum

at the liquid-vapor critical point of the fluid. This allows the compressibility to diverge to

the infinity at the liquid-vapor critical point. The compressibility equation allows the pair

correlation function g(r) to be related to the pressure P of a single component fluid as

�

✓
@P

@⇢

◆

V,T

��1

= 1 + lim
V!1

⇢

Z

V

[g(r)� 1]dr (r ⌘ |r|). (18)

Even at the critical point, g(r) maintains finite values in the range 0  r < 1, and the

correlation between two particles disappears with an increase in the distance separating one

of the two particles from the other.16 These mean that Eq. (18) requires the divergence of

the compressibility to be caused at least by the fact that the long-range behavior of g(r)

should be characterized near the critical point as follows:

g(r)� 1 ⇠ r
�µ (0 < µ  3). (19)

In fact, the long-range feature of the pair correlation function can be expressed in several

particular conditions as the product of the factor r
D�3 (D = 2) and a particular function
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�(r) which can be given as a Taylor series with respect to powers of r.18,19

g(r)� 1 ⇡ r
D�3

�(r) (D = 2). (20)

Despite this fact, the physical cluster growth can allow the dependence of the pair correlation

function g(r) on the three-dimensional distance r between two particles20 to deviate near

the liquid-vapor critical point. The growth can alter the dependence that is expressed as the

product of a negative power r
�1 and a particular function given as the Taylor series with

respect to positive powers of r.9,17 The density fluctuations makes the behavior of the pair

correlation function g(r) at large r near the liquid-vapor critical point9,17 di↵er from that in

the gas state being far from the critical point.

Furthermore, the density fluctuations related to the formation of physical clusters can re-

sult in anomalies11–15 with respect to various properties of fluids near their liquid-vapor

critical points. Inhomogeneity that is generated in fluids consisting of metallic atoms

near the liquid-vapor critical points10 can cause anomalies in electrical properties,11 optical

reflectivity,12 and optical absorption.12,13 If a fluid consists of metallic atoms, inhomogeni-

eties of the fluid due to the physical cluster formation10 can be observed as anomalies for

electrical properties,11 the optical reflectivity,12 and the optical absorption.12,13 The electrical

conductivity of liquid mercury maintained at a temperature near the critical point decreases

with a rather steep gradient as the density of mercury atoms decreases.11 The real part of

the dielectric constant determined using optical reflectivity and absorption measurements

for a mercury fluid near the critical point increases sharply at a particular density as the

density of mercury atoms increases.12

The viscosities of fluids can become anomalous near the liquid-vapor critical points14,15.

The viscosities of fluids exhibit asymptotic divergence near the liquid-vapor critical points,

and measuring the viscosities of carbon dioxide and xenon near their critical points allowed

the critical exponent characterizing the asymptotic divergence to be determined.14 The phys-

ical cluster formation can result in a characteristic increase in the viscosities of fluids near

the critical points.15

Various critical phenomena suggest that the formation of stable physical clusters, which

is not expected in the gas phase, enables features of the fluid found in the liquid state to

become di↵erent from its features found in the gas state, and this fact suggests that the

physical cluster formation can cause the gas-liquid phase transition. A contribution of the
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physical cluster formation to the transition of a fluid from the liquid state into the solid

state is suggested according to the fact that the development of physical clusters which are

formed by attractive forces between colloidal particles allows a colloidal solution to generate

a gel state.3

A contribution of the physical cluster formation to the liquid-solid phase transition is

also suggested according to the fact that a fluid composed of the liquid phase and the gas

phase makes the liquid-vapor interface become macroscopically smooth. The formation of

the smooth liquid-vapor interface means that the situation where particles constituting the

liquid phase are subjected is di↵erent from a state which is given by making particles dense

in maintaining the situation where particles constituting the gas phase are subjected. At

least in order to form the smooth liquid-vapor interface, the high density fluid being in the

liquid phase must generate a macroscopic force, which contributes to minimizing its surface.

Moreover, generating the clear smooth boundary between the high density part being the

liquid phase and the low density part being the gas phase suggests that particles moving

vigorously in the liquid phase have to be comparatively stably confined. The capability to

confine particles moving vigorously can be generated by the formation of physical clusters.

Besides, the capability to confine such particles allows for generating a macroscopic force

which contributes to minimizing the surface of the high density part. Such a macroscopic

force should contribute to making particles in the liquid phase become close to each other,

and as a result, the presence of the macroscopic force should aid in transforming the fluid

of the liquid phase into the solid sate. On the other words, an e↵ect of the physical cluster

formation on the confinement of vigorously moving particles can contribute to the liquid-

solid phase transition.

The formation of physical clusters in multi-component fluids is interesting subjects that

should be considered. The possibility that physical clusters influence a microscopic distri-

bution pattern of particular atoms (or molecules) which are dissolved as solute particles in a

fluid being in the liquid state makes another e↵ect of the physical cluster formation realized,

since a fluid being in the gas state where an e↵ect of the physical cluster formation is not

expected has a tendency to microscopically homogeneously mix with another fluid being in

the gas state where an e↵ect of the physical cluster formation is also not expected. Solute

particles that cannot actively contribute to the physical cluster formation should have a ten-

dency to distribute among physical clusters, and solute particles that can actively contribute
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to the physical cluster formation should have a tendency to distribute as a portion of the

particle group which consists of particles forming physical clusters. Hence, physical clusters

can make a microscopic distribution pattern of solute particles become inhomogeneous in a

fluid mixture such as a liquid of metallic alloy and other solute-solvent mixtures. A specific

e↵ect of such a microscopic inhomogeneous distribution pattern of solute particles can be

found as a macroscopic phenomenon called the osmotic pressure, since the osmotic pres-

sure occurring by dissolving solute particles that cannot actively contribute to the physical

cluster formation must be di↵erent from that occurring by dissolving solute particles that

can actively contribute to the physical cluster formation. In addition, the dependence of

the osmotic pressure on the density of solute particles in a situation where the stability of

physical clusters is high should be considerably di↵erent from that in a situation where the

stability of physical clusters is low.

In a situation where the stability of physical clusters is low, both the formation of physical

clusters and the decomposition of physical clusters can occur as very sensitive responses to

slight variations in temperature. The anomalous behavior of the thermal conductivity of a

fluid should be found in such a specific situation.43 Then, physical clusters formed in the fluid

do not have the capability to stably confine particles moving vigorously. Allowing both the

confinement of such particle and the release of them easily to occur enables the fluid to be

stirred. Hence, the thermal conductivity of the fluid should enhance in the situation where

physical clusters loses the capability to stably confine particles moving vigorously. Although

the physical cluster formation can contribute to the occurrence of various phenomena, an

e↵ect of the physical cluster formation on the magnitude of the pair correlation function

might not be su�ciently apparent. It is expected that the fraction of the contribution

of the physical cluster formation to the pair correlation function can remain su�ciently

small in comparison with the magnitude of the pair correlation function. Even if the pair

correlation function which is determined by X-ray scattering measurements and neutron

scattering measurements can expose the contribution of the physical cluster formation to

the pair correlation function, its contribution may be found only as vague traces of peaks

beside normal peaks.

Despite this fact, various phenomena found as e↵ects of the physical cluster formation

allow a procedure for simply estimating the physical cluster formation to become interesting

in order to try examining their e↵ects on features of a fluid. Each physical cluster which is
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formed in a fluid system is regarded as an ensemble of particles linked each other by bonds.

Then, each bond is defined as a bound state in which a contribution of attractive forces

between pair particles dominates a contribution of the relative kinetic energy between them,

according to Hill.1 A useful procedure for estimating the physical cluster formation due to

such bonds can be found according to a concept of Coniglio and co-workers,2 and it results

in an integral equation. The integral equation has played a role for examining the physical

cluster formation. In fact, the use of the integral equation made it possible to examine the

physical cluster formation caused by a contribution of a extremely short-range attractive

force4 and to examine the physical cluster formation caused by the Yukawa potential.5,75

Moreover, a procedure for making corrections to the Percus-Yevick approximation28 en-

abled an estimate of physical cluster formation due to the integral equation to be improved

considerably.6 Although the integral equation enables the physical cluster formation to be

examined, it is not equivalent to the Ornstein-Zernike equation. The use of the Ornstein-

Zernike equation has been successful for examining both a fluid being in the gas state and

the fluid being in the liquid state, so that resulting from the Ornstein-Zernike equation must

be considered indirectly to involve the contribution of the physical cluster formation. The

Ornstein-Zernike equation should involve the contribution of the integral equation which

enables the formation of physical clusters to be examined. This fact means that subtract-

ing the contribution of the integral equation from the Ornstein-Zernike equation results in

an additional integral equation which is equivalent to both an integral equation derived

by Stell28 and another one derived by Chiew and co-workers.29 If this additional integral

equation is coupled to the integral equation which enables the physical cluster formation

to be examined, the two integral equations provides an integral equation system, which is

equivalent to the Ornstein-Zernike equation. Estimating an e↵ect of the physical cluster

formation on a feature of a fluid can be allowed by the use of the integral equation system.

2. The pair connectedness for estimating the physical cluster formation

(a) Correlation functions

Three-dimensional coordinates for the positions of particles in a fluid system are denoted

by ri for particle i and rj for particle j. A situation where these particle are included in

the same physical cluster is allowed. A correlation function that can play a role instead
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of the pair correlation function is necessary to estimate the mean size of physical clusters.

The pair connectedness P(|ri� rj|) is an important correlation unction2 to estimate it. The

probability that particle i and particle j are located in the volume elements dri at ri and drj

at rj, respectively, is ⇢⇢g(rij)dridrj. The probability increases when particles in the fluid

system are prevented from moving easily. Here, rij is the distance |ri � rj|, and ⇢ is the

density of particles for a uniform distribution, so that the mean number of particles within

a macroscopic volume V is V ⇢. The magnitude of g(rij) is proportional to the probability

that particle i in a volume element dri is located at the distance rij far from particle j in

a volume element drj. This feature of the pair correlation function suggests that maximum

values of g(rij) should become larger when particles in a fluid system are prevented from

moving easily than when they can move easily. The pair correlation function g is useful

for knowing whether particles in a fluid system can move easily or can be prevented from

moving easily, and the use of g allows for estimating the density fluctuations for the fluid

system even near the critical point. A feature of a fluid near the liquid-vapor critical point

appears as a characteristic behavior of the pair correlation function g, which can express the

degree of preventing particles in a fluid system from moving easily.9,16,17 Nevertheless, the

pair correlation function g cannot simply aid in examining the physical cluster formation.

Even if a fluid is a particle system consisting of hard-cores between which attractive forces

do not exist, the pair correlation function g(rij) (i 6= j) can express the degree of preventing

particles from moving easily because increasing ⇢ increases the probability ⇢⇢g(rij)dridrj.

Physical clusters are, however, not formed in the fluid.

If physical clusters are formed, the magnitude of g(rij) is a↵ected by the physical cluster

formation. The magnitude of g(rij) includes the contribution of physical cluster formation.

If the contribution of physical cluster formation to the magnitude of g(rij) is divided, other

contributions of physical cluster formation can be clearly estimated.

An f function based on the definition f(rij) ⌘ e
��u(rij) � 1 specifies a particle pair that

consists of particle i at ri and particle j at rj. The use of f functions allows the pair

correlation function g(rij) to be expressed in the form of a density expansion.22,23 For an N

particle fluid system, specific features of g(rij) are determined by N(N �1)/2 particle pairs.

Then, the relation between two particles constituting each pair maintains one of the two

possibilities. A possibility is a situation where the two particles are bound to each other.

The other possibility is a situation where the two particles are not bound.

14



The Hamiltonian for describing the movements of the two particles is given as

H2 =
p
2

i

2mi
+

p
2

j

2mj
+ u(rij), (21)

where the mass of particle i and that of particle j aremi andmj respectively. rij corresponds

to the relative position between particle i and particle j. The center of mass R is given by

R = (miri + mjrj)/(mi + mj). The total momentum P carried by the center of mass is

given by P = pi + pj. The relative velocity between particle i and particle j is given by

dividing prel by the reduced mass m̄. prel is given by prel = (mjpi �mipj)/(mi +mj), and

m̄ is given by m̄ = mimj/(mi+mj). If the total mass M estimated as M = mi+mj is used,

the Hamiltonian is expressed by the use of the kinetic energy of the center of mass P 2
/2M

and the relative kinetic energy p
2

rel
/2m̄ as follows:

H2 =
P

2

2M
+

p
2

rel

2m̄
+ u(rij), (22)

where P = |P| and prel = |prel|. Then, Eq. (22) means that the Hamiltonian is H2 =

H̄2(P,prel, ri, rj). Based on the assumption that particle i is located at the origin of a

coordinate, the use of the relative kinetic energy that is expressed in the polar coordinate

denoted by the parameters r, ✓,� allows H2 to be given as

H2 =
P

2

2M
+

1

2m̄

✓
p
2

r +
p
2

✓

r2
+

p
2

�

r2 sin2
✓

◆
+ u(r), (23)

Eq. (23) means that the Hamiltonian is H2 = Ĥ2(P, pr, p✓, p�, r, ✓,�). In Eq. (23), the second

term on the right hand side of the equation is the contribution of the relative kinetic energy

of the two particles, and the third term is the contribution of the interactions between them.

For the Hamiltonian given by Eq. (23), Q2 is denoted as

Q2 =
1

2!(2⇡h̄)6
V

Z

V

drd✓d�

Z 1

�1
dprdp✓dp�

Z 1

�1
dP exp[��Ĥ2], (24)

where D corresponds to the whole ranges for the parameters pr, p✓, and p�. If pa-

rameters p̄r, p̄✓, and p̄� are defined as p̄r ⌘ pr(�/2m̄)1/2, p̄✓ ⌘ (p✓/r)(�/2m̄)1/2 p̄� ⌘

(p�/r sin ✓)(�/2m̄)1/2, �H2 is expressed as

�H2 = �
P

2

2M
+ p̄

2

r + p̄
2

✓ + p̄
2

� + �u(r). (25)

15



For the use of the parameters Pr, P✓, and P�, Eq. (25) allows Eq. (24) to be rewritten as

follows

Q2 =
V

2⇡3/2

 
2⇡

p
Mm̄

(2⇡h̄)2�

!3/2 Z 1

0

4⇡r2dre��u(r)

Z 1

�1
dp̄rdp̄✓dp̄�e

�(p̄2r+p̄2✓+p̄2�), (26)

According to Eq. (25), the contribution, E , of the relative kinetic energy of the two

particles is given as E = p̄
2

r + p̄
2

✓ + p̄
2

�, and �u(r) denotes the contribution of the interactions

between them at each r. At each r that allows u(r) to be negative, the situation where the

two particles are bound to each other for the attractive force requires a relation expressed

by

p̄
2

r + p̄
2

✓ + p̄
2

�  ��u(r). (27)

The probability p(r) that the two particles are found in a bound state E + �u(r)  0 is

estimated from the integration of exp[�(p̄2r + p̄
2

✓ + p̄
2

�)] included in Eq. (26) as follows:

p(r) =
1

⇡3/2

Z

p̄2r+p̄2✓+p̄2���u(r)

dp̄rdp̄✓dp̄�e
�(p̄2r+p̄2✓+p̄2�). (28)

Then, the integration of exp[�(p̄2r + p̄
2

✓ + p̄
2

�)] is limited by p̄r, p̄✓, and p̄� that satisfy Eq.

(27). If Eq. (28) is rewritten through the use of E , the following equation is obtained for

p(r)

p(r) =
2

⇡1/2

Z ��u(r)

0

e
�E

E
1/2

dE

=
2

⇡1/2


�

✓
3

2

◆
� �

✓
3

2
,��u(r)

◆�
, (29)

where �(⌧, t) is the incomplete gamma function expressed by �(⌧, t) =
R1
t e

�y
y
⌧�1dy.1

At each r that allows u(r) to be negative, the situation where the two particles are not

bound requires a relation expressed by

p̄
2

r + p̄
2

✓ + p̄
2

� > ��u(r). (30)

The probability p̄(r) that the two particles are found in an unbound state E + �u(r) > 0 is

estimated as follows:

p̄(r) =
1

⇡3/2

Z

p̄2r+p̄2✓+p̄2�>��u(r)

dp̄rdp̄✓dp̄�e
�(p̄2r+p̄2✓+p̄2�) (31)

=
2

⇡1/2
�

✓
3

2
,��u(r)

◆

=1� p(r). (32)
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At each r that allows u(r) to be positive, Eq. (30) is always satisfied for arbitrary values

of three parameters p̄r, p̄✓, and p̄�. Then, p̄(r) = 1 (p(r) = 0) is satisfied, and the two

particles are not bound at each r that allows u(r) to be positive.

Thus, p(r)
��
r=rij

given by the use of Eq. (29) denotes the probability that particle i at

ri and particle j at rj that are specified by an f function f(rij) are bound to each other.

The use of the probability p(rij) allows the f function f(rij) to be given as the sum of the

f
+-function and the f

⇤-function, which are expressed as

f
+(rij)⌘ p(rij)e

��u(rij) (33)

f
⇤(rij)⌘ [1� p(rij)]e

��u(rij) � 1. (34)

Each f -bond in each of diagrams found from the density expansion of g(r12) corresponds

to an f function. In its density expansion, each of the f functions is substituted with the

sum of an f
+-function and an f

⇤-function, which is exemplified by f(rij) = f
+(rij)+f

⇤(rij).

As the result, each diagram is expressed as the sum of diagrams that are formed by f
+ bonds

specified by f
+-functions and f

⇤ bonds specified by f
⇤-functions. The sum includes at least

a diagram in which one root point r1 is connected to the other root point r2 through at least

one path of all f+-bonds given as a product of f+-functions. According this diagram, the two

particles corresponding to the two root points are part of the same physical cluster1. Based

on these procedures, the pair connectedness P(r12), which is a correlation function related

directly to the physical cluster formation can be extracted from the density expansion of

g(r12).2

The pair connectedness P(r12) is given by the sum of the contributions resulting from

every diagram having at least one path of all f+-bonds between the root points labeled 1 and

2. The use of P(r12) allows ⇢⇢P(r12)dr1dr2 to express the probability that both particle 1 in

dr1 located at r1 and particle 2 in dr2 located at r2 belong to the same physical cluster.2 If

the probability that particle 1 and particle 2 belong to di↵erent physical clusters is expressed

as ⇢⇢D(r12)dr1dr2,2 the pair connectedness P(r12) is related to g(r12) as

g(r12) = P(r12) +D(r12), (r12 ⌘ |r1 � r2|). (35)

This formula indicates that variations in the thermodynamic behavior of a fluid system

due to variations in temperature are dominated by variations in a magnitude of D(r12) if a

high temperature condition forbids physical clusters to be formed. The magnitude of D(r12)
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depends on the number of particles that are categorized as particles linked through each

path that includes f ⇤-bonds. Particles linked through each path that includes f ⇤-bonds are

either particles that do not participate in the physical cluster formation or particles that

do not belong to the same physical cluster. On the other hand, the magnitude of P(r12)

depends on the number of particles that participate in the physical cluster formation and

are linked by paths of f+-bonds. Near or below the liquid-vapor critical point, e↵ects of the

physical cluster formation on the thermodynamic behavior should not be ignored.

Then, unless particles contributing to the magnitude of P(r12) can microscopically and

homogeneously mix with particles contributing to the magnitude of D(r12), a correlation

between the behaviors of the former and latter particle groups must occur. Phenomena sim-

ilar to the above correlation can be found from computer simulations of supercooled liquids.

According to the computer simulations, particles having low mobility cannot microscopi-

cally and homogeneously mix with those having high mobility, so that particles participate

in cooperative motion in structural relaxation.24 Such cooperative motion can be observed

also in colloidal suspensions.25–27

In every hard-sphere fluid system, cooperative motion similar to the above examples

should not exist because every hard-sphere fluid system is characterized by the pair corre-

lation function expressed by g(r12) = D(r12) with P(r12) = 0. According to the equation

of state resulting from the Percus-Yevick approximation,22,23 the density fluctuations in a

hard-sphere fluid system are simply reduced as the density of hard spheres increases, be-

cause an increase in their density limits their motion. If the contribution of attractive

forces between particles to the formation of specific particle configurations is not ignored,

then a fluid system should be characterized by the pair correlation function expressed by

g(r12) = P(r12) + D(r12) with P(r12) 6= 0. In this fluid system, attractive forces between

particles cause the density fluctuations to reach a maximum at the critical point. After

reaching a maximum, the density fluctuations are gradually reduced as the density of par-

ticles increases.8,9 In a fluid system where attractive forces between particles is not ignored,

the magnitude of P(r12) should not be ignored near the critical point. Then, the expression

g(r12) = P(r12) + D(r12) should allow the behavior of the pair correlation function to be

given.

According to g(r12), the probability that particle 1 in a volume element dr1 at r1 is

located at the distance r12 from particle 2 located in a volume element dr2 at r2 is given by
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⇢⇢g(r12)dr1dr2 for a uniform fluid in which ⇢�V at r1 is equal to ⇢�V at r2 on average for a

microscopic volume �V . Then, the probability that particle 1 and the particle 2 are in dr1 at

r1 and in dr2 at r2, respectively is the sum of two contributions. One of the two contributions

corresponds to the probability that both the particle 1 in the volume element dr1 at r1 and

the particle 2 in the volume element dr2 at r2 belong to the same physical cluster. The

other contribution corresponds to the probability that the particle 1 in the volume element

dr1 at r1 and the particle 2 in the volume element dr2 at r2 belong to a physical cluster and

another physical cluster respectively. The former is given by ⇢⇢P(r12)dr1dr2 and the latter

is given by ⇢⇢D(r12)dr1dr2. Thus, the sum, ⇢⇢P(r12)dr1dr2 + ⇢⇢D(r12)dr1dr2, is required to

be equal to ⇢⇢g(r12)dr1dr2.

(b) The mean size S of physical clusters

The microscopic fluid structure induced by the physical cluster formation persuades the

behavior of the pair correlation function to be determined by the sum of the behavior of

a correlation functions and the behavior of the other correlation function. The former cor-

relation function corresponds to D, and is a correlation function characterized by pairs of

particles having highly relative kinetic abilities.2 The magnitude of Dij depends on the num-

ber of particles interacting in unbound states. The latter correlation function is the pair

connectedness P , and is a correlation function characterized by pairs of particles having low

relative kinetic abilities.1,2 The magnitude of P depends on the number of particles interact-

ing in bound states. Particle pairs contributing to the magnitude of P are characterized as

pair particles interacting in a specific situation where a contribution of an attractive force

between the pair particles exceeds a contribution of their relative kinetic energy. Owing

to this fact, P should allow explaining the transition from the liquid sate of a fluid to its

solid state as a phenomenon caused by macroscopically sized physical clusters caused by

the growth of physical clusters. Knowing the growth of physical clusters is enabled from

estimating the mean size S of physical clusters through the use of P .

E↵ects of the physical cluster growth on the behavior of g(r) should be estimated from

the sum of the behaviors of P(r) and D(r). In accordance with Kirkwood and Bu↵,30 the

pair correlation function g(r) has the normalization given as

1

V

Z

V

g(r)dr =
hNi � 1

V ⇢
+

1

V 2

1

⇢2


hNNi � hNihNi

�
, (36)
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where hNi is the mean number of particles within volume V . The dependence of g(r) on V

is negligible for macroscopic V , and the dependence of hNi/V on V and the dependence of

(hNNi � hNihNi)/V on V are also negligible. Thus, Eq. (36) results in
R
V g(r)dr/V = 1

in the limit V ! 1. This relation, along with Eq. (35), requires the normalization for the

pair correlation function to be expressed by

lim
V!1


1

V

Z

V

P(r)dr+
1

V

Z

V

D(r)dr

�
= 1. (37)

The mean size S of physical clusters can be estimated from the use of P(r12). The

equilibrium number ns of physical clusters consisting of s particles can be related to the pair

connectedness P . According to the formula given by Coniglio and co-workers2, the relation

between ns and P is given as

X

1s

s(s� 1)ns = ⇢⇢

Z

V

Z

V

P(|r1 � r2|)dr1dr2. (38)

The factor
P

s sns included in Eq. (38) can be related to the density ⇢ of particles in

the volume V as ⇢ = [1/V ]
P

s sns. The mean physical cluster size S is given as S =

(
P

s s
2
ns)/(

P
s sns). This formula and the relation

P
s sns = V ⇢ allow Eq. (38) to be

rewritten as

S = 1 + ⇢

Z

V

P(r)dr. (39)

The percolation of physical clusters occurs in a fluid system at the percolation threshold.

The use of Eq. (39) allows examining the percolation of physical clusters. The critical condi-

tion at which the mean physical cluster size S given by Eq. (39) reaches infinity corresponds

to the percolation threshold. The percolation of physical clusters in a macroscopic V main-

tained by a fluid system a↵ects the dependence of S on V . If the percolation of physical

clusters does not occur in V , S should be su�ciently independent of V . When percolated

physical clusters exist in macroscopic sizes in V , S should depend on V .

3. E↵ects of the physical cluster growth

(a) The occurrence of macroscopically sized physical clusters
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According to a formula given by Coniglio and co-workers2, the integral of P(r) found in

Eq. (37) can be related to the mean size S of physical clusters, because Eq. (39) resulting

in the estimate of S can be rewritten as follows:

S � 1

V
= ⇢

1

V

Z

V

P(r)dr. (40)

If the percolation of physical clusters does not occur in a macroscopic V maintained by

a fluid system, S which is estimated for the fluid system by Eq. (39) should be su�ciently

independent of V , and the limit V ! 1 does not a↵ect S. Then, the limit V ! 1 results

in (S�1)/V = 0. Therefore, Eq. (40) allows (⇢/V )
R
V P(r)dr = 0 to be satisfied. Moreover,

Eq. (37) requires (1/V )
R
V D(r)dr = 1 to be satisfied in the limit V ! 1. Based on these

consequences, the normalization conditions that are given in the limit V ! 1 are described

as 8
><

>:

limV!1(1/V )
R
V P(r)dr = 0,

limV!1(1/V )
R
V D(r)dr = 1.

If the percolation of physical clusters occurs in a macroscopic V maintained by the fluid

system, the mean size S that is estimated for the fluid system from the use of Eq. (39)

should be dependent on V . Then, the magnitude of [(S � 1)/V ] can have a finite non-zero

value. Then, Eq. (37) requires conditions given as
8
><

>:

0 < limV!1(1/V )
R
V P(r)dr  1,

0  limV!1(1/V )
R
V D(r)dr < 1.

If a state of the fluid is in the immediate vicinity of the liquid-solid transition point where

the relation 0 < ⇢
sd
�⇢

lq
⌧ 1 (⇢sd denotes ⇢ in a solid state, and ⇢

lq denotes ⇢ in a liquid state

which can be transformed into the solid state) is satisfied, almost all physical clusters should

hold macroscopic sizes in V . Then, the dependence of S on V should be characterized by

S/V ⇡ ⇢
sd, which corresponds to the situation where the growth of physical clusters reaches

the limit. Also, Eq. (40) results in (1/V )⇢
R
V P(r)dr ⇡ ⇢

sd in the limit V ! 1. According

to this situation, Eq. (37) allows (1/V )
R
V D(r)dr ⇡ 0 to be satisfied in the limit V ! 1.

Based on these consequences, the normalization conditions that are given in the limit V ! 1

are described as 8
><

>:

limV!1(1/V )
R
V P(r)dr ⇡ 1,

limV!1(1/V )
R
V D(r)dr ⇡ 0.
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A state specified by (1/V )
R
V D(r)dr ⇡ 0 should extremely lack particle pairs characterized

as pair particles interacting in a specific situation where a contribution of the relative kinetic

energy of the pair particles exceeds a contribution of an attractive force between them. This

means that the fluid might lose a feature found as liquid. Thus, the growth of physical

clusters that proceeds in macroscopic V beyond the percolation threshold can contribute

to making the phase transition from the liquid state of a fluid to the solid state occur. A

situation where (1/V )
R
V D(r)dr ⇡ 0 is satisfied should be found at least near the triple

point.

(b) The behavior of correlation functions

The pair correlation function behaves as g(|r1 � r2|) ⇡ 1 for large |r1 � r2|, which cor-

responds to a situation where one of two particles corresponding to the location at r1 in a

fluid system are widely separated from the other corresponding to the location at r2. In the

limit V ! 1 and r ! 1, it behaves as g(r) = 1.1 This fact requires the behaviors of the

two correlation functions to be restricted by the following relation:

P(r) +D(r) ⇡ 1, (1 ⌧ r/�), (41)

where the repulsive force between two particles exceeds the attractive force between them

at a position satisfying r < �. Eq. (41) denotes that the behaviors of P(r) and D(r) are

restricted for large r.

In a situation where no percolation of physical clusters occurs, the physical meanings of

the two correlation functions and their behavior given by Eq. (41) require the behaviors of

P(r) and D(r) at large r to be expressed by

8
><

>:

limr!1 P(r) = 0,

limr!1 D(r) = 1.
(42)

The relations given by Eq. (42) should be satisfied even at the percolation threshold, although

they are not correct beyond that point.

The relations have to be modified correctly if macroscopically sized physical clusters in the

fluid increase under a condition being beyond the percolation threshold. Then the magnitude

of P(r) should have a non-zero finite value even for large r. Hence, while increasing extremely
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large physical clusters, the sum of the two correlation functions given by Eq. (41) should

require P(r) and D(r) to behave as
8
>>>><

>>>>:

0 < limr!1 P(r)  1,

0  limr!1 D(r) < 1,

limr!1[P(r) +D(r)] = 1.

The relations have to be modified correctly if a fluid includes a number of macroscopically

sized physical clusters developed under a condition being beyond the percolation threshold.

The existence of a number of extremely large physical clusters allows the normalization

condition that is given as limV!1(1/V )
R
V P(r)dr = 1 and limV!1(1/V )

R
V D(r)dr ⇡

0. If the value of D(r) on the surface of volume V preserves a non-zero finite value,

limV!1(1/V )
R
V D(r)dr ⇡ 0 is not satisfied. Therefore, the relation given by Eq. (41)

requires the two correlation functions to behave for the existence of a number of extremely

large physical clusters as follows
8
>>>><

>>>>:

limr!1 P(r) ⇡ 1,

limr!1 D(r) ⇡ 0,

g(r) ⇡ P(r).

The above relations are satisfied at least near the triple point, where the specific relation

(1/V )
R
V D(r)dr ⇡ 0 should be satisfied

In addition, the state specified by (1/V )
R
V Dij(r)dr ⇡ 0 extremely lacks particle pairs

characterized as pair particles interacting in a specific situation where the relative kinetic

energy of the pair particles exceeds a contribution of an attractive force between them.

Then, the system should lose a feature found as liquid and should gain a feature found as

solid. If the growth of physical clusters increases macroscopically sized physical clusters in

macroscopic V , its growth should contribute to the transition from the liquid state of a fluid

to the solid state.

(c) Integral equations for correlation functions including the pair connectedness

The pair connectedness P(rij) ( rij ⌘ |ri � rj|) is given as the sum of contributions

resulting from every diagram having at least one path of all f+ bonds between the root

points corresponding to the two coordinates ri and rj. The pair correlation function g(rij) is
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given as the sum of contributions resulting from every diagram formed by paths of f bonds

between the root points, according to the density expansion of g(rij). Moreover, Eq. (15)

with Eq. (17) and (16) requires g(rij) to be given the sum of the two contributions that

correspond to the contribution of the nodal diagrams having nodal points and the other

contribution of the non-nodal diagrams having no nodal point. A nodal point is a specific

field point in a diagram, and missing the field point in the diagram means that the diagram

is separated into a group including a root point and the other group including the other root

point.

Based on the example of g(rij), the diagrams contributing to P(rij) are separated into

two groups, i.e., a group consisting of the nodal diagrams of f+-bonds and the other group

consisting of the non-nodal diagrams of f+-bonds. This means that P(rij) is expressed as

P(rij) = N
+(rij) + C

+(rij),

where N
+(rij) is the contribution of all nodal diagrams having at least one path of all f+-

bonds between the two root points, and C
+(rij) is the contribution of all non-nodal diagrams

having at least one path of all f+-bonds between the two root points.

In the Ornstein-Zernike equation,22 the contribution of all non-nodal diagrams consisting

of paths of f -bonds between the two root points corresponds to the direct correlation function

c(rij). According to the Ornstein-Zernike equation, g(rij) � 1 is equal to N(rij) + c(rij) in

which N(rij) represents the contribution of all nodal diagrams consisting of paths of f -bonds

between the two root points, and N(rij) is given as the convolution integral ⇢
R
c(rik)[g(rkj)�

1]drk, which is simplified by using rik ⌘ |ri � rk| and rkj ⌘ |rk � rj|.

If analogy with the Ornstein-Zernike equation are assumed, the convolution integral of

the product of C+(rik) and P(rkj) should result in N
+(rij) = ⇢

R
C

+(rik)P(rkj)drk. This

consequence and the relation P(rij) = C
+(rij) + N

+(rij) results in an integral equation

which is required in order to estimate P(rij).2 Thus, the pair connectedness P(rij) is given

as a solution of the integral equation expressed as

P(rij) = C
+(rij) + ⇢

Z

V

C
+(rik)P(rkj)drk, (43)

where C
+(rij) is an unknown function. Eq. (43) has the same mathematical structure as

the Ornstein-Zernike equation, and it is used in the limit V ! 1,

Finding an integral equation for the correlation function D(rij) is possible by considering

the Ornstein-Zernike equation. Owing to the relation given by Eq. (35), the Ornstein-Zernike
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equation is expressed as

P(rij) +D(rij)� 1 = c(rij) + ⇢

Z

V

c(rik)P(rkj)drk

+ ⇢

Z

V

c(rik)[D(rkj)� 1]drk. (44)

This equation must involve the contribution of the pair connectedness P , which should be

estimated by Eq. (43). If the contribution of non-nodal diagrams which do not include

paths of all f+-bonds between i and j is expressed as C⇤(rij), the direct correlation function

c(rij), which represents the contribution of all non-nodal diagrams consisting of paths of

f -bonds between the two root points, must be equal to the sum of C⇤(rij) and C
+(rij).

Then, C+(rij) is the contribution of all non-nodal diagrams having at least one path of all

f
+-bonds between the two root points. Thus, c(rij) is expressed as

c(rij) = C
+(rij) + C

⇤(rij). (45)

If Eq. (43) is considered, the substitution of Eq. (45) into Eq. (44) results in an integral

equation which is equivalent to both an integral equation derived by Stell28 and another one

derived by Chiew and co-workers.29 This integral equation is expressed as

H(rij) =C
⇤(rij) + ⇢

Z

V

C
⇤(rik)P(rkj)drk

+⇢

Z

V

C
+(rik)H(rkj)drk + ⇢

Z

V

C
⇤(rik)H(rkj)drk, (46)

where

H(rij) ⌘ D(rij)� 1. (47)

In Eq. (46), C⇤(rij) is an unknown function. According to the relation given by Eq. (45),

an integral equation system consisting of Eqs. (43) and (46) is equivalent to the Ornstein-

Zernike equation. Equation (43) contributes to estimating the formation of physical clusters,

and Equation (46) contributes to estimating an e↵ect of the physical cluster formation. In

fact, the second term and the third term on its right hand side in Eq. (46) represent a way to

have an e↵ect of the formation of physical clusters on the correlation function H. An e↵ect

of these terms should play a role for explaining phenomena due to the formation of physical

clusters. For a specific fluid system in which no physical cluster formation is expected, Eq.

(46) is simplified as

H(rij) = C
⇤(rij) + +⇢

Z

V

C
⇤(rik)H(rkj)drk. (48)

25



The ensemble of particles that contribute to the magnitude of C+(r) is the same as that

contributing to P(r). Similarly, the ensemble of particles that contribute to the magnitude

of C⇤(r) is the same as that contributing to D(r).

The integral equation system composed of Eqs. (43) and (46) is equivalent to the Ornstein-

Zernike equation, which has been successful for examining a fluid in both the gas and liquid

states.

When the gas phase of a fluid and the liquid phase of the fluid are in equilibrium, Eq. (48)

is applicable to examining the behavior of this gas phase, and Eq. (46) should be applicable

to examining the behavior of that liquid phase. In addition, when
��P(r)/D(r)

�� ⌧ 1 is

satisfied, the following relation can occur
���⇢
Z

V

C
⇤(rik)P(rkj)drk + ⇢

Z

V

C
+(rik)H(rkj)drk

���⌧
���H(rij)

���. (49)

Eq. (48) can be an appropriate approximation even for a fluid involving the formation of

physical clusters, if the condition |P(r)/D(r)| ⌧ 1 is satisfied for the fluid.

4. Each closure scheme for solving each integral equation

(a) Two closure schemes

According to the Percus-Yevick (PY) approximation, an approximate relation between

P(rij) and C
+(rij)2 can be given within the e↵ective range where the contribution of u(rij)

to an attractive force, which makes particle i interact with particle j, cannot be neglected.

An approximate relation between D(rij) and C
⇤(rij) also can be given within the e↵ective

range. As a result, an aid of the PY approximation allows the characterization of P(rij) due

to a pair potential. Moreover, it allows the characterization of D(rij) due to a pair potential.

The pair correlation function g
PY(rij) due to the PY approximation is expressed as

g
PY(rij)e�u(rij) = 1 + N(rij). If the relations e��u(rij) = f

+(rij) + f
⇤(rij) + 1 and N(rij) =

N
+(rij) +N

⇤(rij) both are considered, the PY approximation is rewritten as

g
PY(rij) =f

+(rij)
h
1 +N

+(rij) +N
⇤(rij)

i
+
h
f
⇤(rij) + 1

i
N

+(rij)

+
h
f
⇤(rij) + 1

ih
1 +N

⇤(rij)
i
. (50)

The right hand side of Eq. (50) should be the sum of the terms contributing to P(rij) and

the terms contributing to D(rij) owing to the relation given by Eq. (35). Considering this
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fact allows Eq. (50) to be divided into two formulae. Owing to P(rij) = C
+(rij) +N

+(rij),

one of the two formulae is

P(rij) = f
+(rij)g

PY(rij)e
�u(rij) + [f ⇤(rij) + 1][P(rij)� C

+(rij)], (51)

and owing to 1 +N
⇤(rij) = g

PY(rij)e�u(rij) �N
+(rij), the other is

D(rij) = [f ⇤(rij) + 1][gPY(rij)� c
PY(rij)� P(rij) + C

+(rij)], (52)

where c
PY(rij) is the direct correlation function due to the PY approximation and is given

as cPY(rij)/(1� e
�u(rij)) = g

PY(rij).

By considering the relations expressed by Eqs. (33) and (34) with Eq. (29), Eq. (51) can

be rewritten as

P(rij) +
2�[3/2, w(rij)]

⇡1/2e�u(rij) � 2�[3/2, w(rij)]
C

+(rij)

=
2{�(3/2)� �[3/2, w(rij)]}e�u(rij)

⇡1/2e�u(rij) � 2�[3/2, w(rij)]

c
PY(rij)

1� e�u(rij)
, (53)

where w(rij) ⌘ ��u(rij)✓[��u(rij)] (✓[x] = 1 (0  x), ✓[x] = 0 (0 > x)). Eq. (53) can be

used as a closure scheme for Eq. (43), if cPYij (r) is given.

If the relations expressed by Eqs. (35) and (45) are considered, Eq. (52) can be rewritten

as

D(rij) =
2�[3/2, w(rij)]

2�[3/2, w(rij)]� ⇡1/2e�u(rij)
C

⇤(rij). (54)

An estimate of D(rij) is allowed from considering Eq. (54) as a closure scheme for Eq. (46) if

Pij(r) is estimated with the use of Eq. (43). Although Eqs. (53) and (54) can be used when

either �u(rij) < 0 or �u(rij) > 0, the relation �u(rij) > 0 requires Pij(r) = 0, C+(rij) = 0,

D(rij) 6= 0, and C
⇤(rij) 6= 0.

Eqs. (53) and (54) enable P(rij) and D(rij) to be characterized by a pair potential, if

c
PY(rij), C+(rij), and C

⇤(rij) are given. Moreover, Eqs. (53) and (54) suggest that separating

P(rij) from g(rij) allows a pair potential characterizing P(rij) to be made di↵erent from a

pair potential characterizing D(rij). Even if a pair potential controlling the behavior of pair

particles which interact in a situation I where a contribution of an attractive force between

them exceeds a contribution of their relative kinetic energy is di↵erent from a pair potential
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controlling the behavior of pair particles which interact in a situation II where a contribution

of their relative kinetic energy exceeds a contribution of the attractive force between them,

the use of Eqs. (53) and (54) enables P(rij) and D(rij) to be estimated. The di↵erence

between a pair potential in the situation I and that in the situation II may occur in a fluid

system consisting of molecules that can form hydrogen bonds between them.

When the integral equation system given by Eqs. (43) and (46) is solved, the charac-

teristics of attractive forces which act between particles contributing to the magnitude of

P(rij) are permitted to di↵er from the characteristics of attractive forces which act among

particles contributing to the magnitude of D(rij). A pair potential u+(rij) which can char-

acterize the former attractive forces may di↵er from a pair potential u
⇤(rij) which can

characterize the latter attractive forces. Attractive forces among particles can depend on

bond angles, torsional angles and coordination number of particles.48,49 Many-body e↵ects

which are generated as the dependence of attractive forces on bond angles, torsional angles

and coordination number of particles should influence the features of pair potentials if the

pair potentials are made function as models for simulating e↵ects of the attractive forces.

Then, the simplest model which can involve the mean features of the many-body e↵ects as

spherically symmetric contributions should be a pair potential which can characterize the

mean features of attractive forces acting among particles. If a fluid has a temperature at

which a locally ordered structure cannot be maintained, the many-body e↵ects should be

ignored even in a dense gas state. The many-body e↵ects can depend on the degree of the

kinetic energies of particles. Thus, attractive forces which depend on bond angles, torsional

angles and atomic coordination number should make u
+(rij) di↵er from u

⇤(rij).

(b) The simple closure scheme for the MSA

The closure scheme given by Eq. (53) is not a practicable way to solve Eq. (43) analyt-

ically. Fortunately, Eq. (43) has the same mathematical structure as the Ornstein-Zernike

equation. The Ornstein-Zernike equation can be solved analytically for some fluids, if the

mean spherical approximation (MSA)31 is used. In the MSA, the direct correlation function

c(r) is given as the sum of the short-range contribution c
0(r) and the long-range contribution
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��u(r). This means that c(r) is expressed as

c(r) = c
0(r)� �u(r) (55)

c
0(r) = 0, for r > �, (56)

where � is the hard-core of a particle. If C+(r) is given in the same form as c(r) given in

the MSA, the procedure for solving Eq. (43) can be simplified, as is found in the procedures

concerning the MSA.

According to the MSA,23,31 the direct correlation function c(r) out of the contribution of

the hard-core interaction is e↵ective within the range where the magnitude of u(r) is not

neglected. c(r) decays to zero as rapidly as ��u(r), which expresses a microscopic feature.

This means that the ranges within which the correlation functions C+(r) and C
⇤(r) are not

zero remain microscopic sizes because of Eq. (45). The correlation function g(r)� 1 decays

to zero much more slowly than c(r)9,17. Thus, the behavior of g(r)� 1 is di↵erent from the

behavior of c(r), which has a tendency to maintain the microscopic feature.

This fact is demonstrated by the solution that is obtained by solving the Ornstein-Zernike

equation recursively. The solution is given as

g(r)� 1 =c(r) + ⇢

Z

V

c(r13)c(r32)dr3

+⇢⇢

Z

V

Z

V

c(r13)c(r34)c(r42)dr3dr4 + · · · , (57)

where the convolution integrals denote contributions from particle 3, particle 4, · · · , which

distribute around particle 1 and particle 2 that exist away from each other at the distance

r. Contributions from particle 3, particle 4, · · · , make the behavior of g(r) � 1 di↵er from

the behavior of c(r)

When the relation between the distance r and the hard core diameter � of each particle

satisfies r  �, the relation g(r)� 1 = �1 should be satisfied. Hence, Eq. (57) requires c(r)

to be negative even for r/� ⇡ 1 if 0 < r/� < 1 is satisfied. Every convolution integral in

Eq. (57) cannot always positively contribute to the magnitude of g(r)�1. Nevertheless, the

magnitude of g(r)� 1 can remain a positive finite value at large r that is out of the e↵ective

range where c(r) 6= 0. This means that convolution integrals which positively contribute to

the magnitude of g(r)� 1 are dominant in Eq. (57). Thus, the manner in which the direct

correlation function contributes to the magnitude of g(r) � 1 denotes that the long-range

contribution characterized for � < r di↵ers from the short-range contribution characterized
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for r  �. This behavior agrees with the concept for the MSA, i.e., the concept that c(r) is

given as the sum of the short-range contribution and the long-range contribution.

The direct correlation function c(r) is the contribution of all non-nodal diagrams consist-

ing of paths of f -bonds between the two root points. Similarly, C+(r) is the contribution

of all non-nodal diagrams having at least one path of all f+-bonds between the two root

points, and C
⇤(r) is the contribution of non-nodal diagrams which do not include paths of

all f+-bonds between the two root points. The similarity among these diagram structures

suggests that both the behavior of C+(r) and the behavior of C⇤(r) should be similar to

the behavior of c(r). According to the MSA,31 the direct correlation function c(r) is given

by Eq. (56), and the MSA shows that c(r) behaves as c(r)/(��u(r)) = 1 and c
0(r) = 0

outside the e↵ective range of the hard core potential. Thus, the similarity between c(r) and

C
+(r) suggests that the behavior of C+(r) should is given as the sum of the short-range

contribution expressed as C0+(r) and the long-range contribution to C
+(r). Moreover, the

similarity between c(r) and C
⇤(r) suggests that the behavior of C⇤(r) should is given as the

sum of the short-range contribution expressed as C0⇤(r) and the long-range contribution to

C
⇤(r).

(c) Behavior of C
+(r) for 0 < ��u(r) ⌧ 1 at large r.

The behavior of C+(r) at large r can be readily determined. When the distance between

particle 1 and particle 2 is su�ciently large, |�u(r)| should be su�ciently small. Equation

(29) can then be approximated as

p(r) =
4

3
p
⇡
(��u(r))3/2 �

4

5
p
⇡
(��u(r))5/2

+
2

7
p
⇡
(��u(r))7/2 + · · · . (58)

If p(r) given by Eq. (58) is substituted into Eq. (53), the following formula is obtained:

C
+

ij =
c
PY

ij

��uij

h 4

3
p
⇡
(��uij)

3/2
�

22

15
p
⇡
(��uij)

5/2 + · · ·

i

+Pij

h
��uij �

4

3
p
⇡
(��uij)

3/2
�

1

2
(��uij)

2 +
32

15
p
⇡
(��uij)

5/2 + · · ·

i
. (59)

A long-range contribution to C
+(r) is obtained from Eq. (59) by considering an as-

sumption which is made as P(r) ⇠ [��u(r)]⌫ and 1  ⌫ for 1 ⌧ r/� and �u(r) <

0. Here, � is the diameter of the hard core of each particle. At least the condition
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P(r)/[g(r) � 1]  1 is always satisfied. This is not inconsistent with Eq. (42) that is

satisfied without percolation of physical clusters. Thus, P(r) for 1 ⌧ r/� should satisfy

[g(r) � 1]/[��u(r)] � P(r)/[��u(r)]. The MSA gives c
PY(r)/[��u(r)] = 1 for 1 ⌧ r/�,

so that the relation g
PY(r) = c

PY(r)/{1� exp[�u(r)]} due to the PY approximation results

in limr!1[g(r) � 1]/[��u(r)] = 1/2 owing to a general assumption limr!1 u(r) = 0. This

result suggests 1/2 � P(r)/[��u(r)] for 1 ⌧ r/�, and the behavior of P(r) for 1 ⌧ r/�

is expressed as P(r) ⇠ [��u(r)]⌫ and 1  ⌫. Owing to this behavior of P(r), a long-range

contribution to C
+(r)38 is found from Eq. (59) as

C
+(r) ⇡

4

3
p
⇡

⇥
��u(r)

⇤3/2
, (for 1 ⌧ r/�). (60)

(d) Behavior of P(r) for 0 < ��u(r) ⌧ 1 at large r.

The expansion of Eq. (53), which is obtained in powers of ��u(r) for |�u(r)| ⌧ 1 and

1 ⌧ r/� based on the substitution of p(r) expressed by Eq. (58), can be given instead of

Eq. (59) as follows

P(r) =�
c
PY(r)

��u(r)

h 4

3
p
⇡
(��u(r))1/2 +

16

9⇡
(��u(r)) +

⇣ 64

27⇡3/2
�

4

5
p
⇡

⌘
(��u(r))3/2 + · · ·

i

+
C

+(r)

��u(r)

h
1 +

4

3
p
⇡
(��u(r))1/2 +

⇣1
2
+

16

9⇡

⌘
(��u(r)) + · · ·

i
. (61)

The use of Eq. (60) obtained under the condition that no percolation of physical clus-

ters occurs enables Eq. (61) to reveal the behavior of P (r) for 1 ⌧ r/�. If the relation

c
PY(r)/(��u(r)) = 1 given for the MSA at large r are considered in Eq. (61), the behavior

of P (r) at large r (1 ⌧ r/�) is expressed as

P(r) =
22

15
p
⇡
(��u(r))3/2 for u(r) < 0. (62)

If each physical cluster formed in a fluid where no percolation occurs has a fractal structure,

then P (r) given by Eq. (62) should represents the characteristics of the fractal structure.38

(e) A simple closure scheme for Eq. (43)

The similarity between the behavior of c(r) and the behavior of C+(r) for variations in r

should allow the behavior of C+(r) to be given as the sum of the short-range contribution

expressed as C0+(r) and the long-range contribution to C
+(r). An approximate C+(r) given

by the sum becomes a simple closure scheme for the integral equation given by Eq. (43).
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Since the long-range contribution to C
+(r) is given by Eq. (60), the simple closure scheme

similar to the MSA is expressed as

C
+(r) = C

0+(r) +
4

3
p
⇡
(��u(r))3/2 for �u(r) < 0, (63)

where for the short-range contribution C
0+(r), the behavior similar to c(r)0 is required

according to analogy with the MSA. Thus, C0+(r) should be given as

C
0+(r) = 0, for r � �. (64)

For the diameter � of the hard core of each particle, the most completely short-range

interaction between pair particles should be attributed to a hard core potential. The hard

core potential does not directly contribute to the interaction between them for r � �. Thus,

Eq. (64) should be justified as an approximate expression as found according to the MSA.

According to the MSA, c(r) decay to zero as rapidly as ��u(r), which expresses a micro-

scopic feature. Eq. (63) demonstrates that C+(r) behave in a way similar to c(r), although

Eq. (62) requires it to decay to zero more rapidly than ��u(r). Despite this fact, P(r)

can still have a finite value being no zero even out of the e↵ective range in which the mi-

croscopic feature is subject. This can be explained via the solution that is obtained from

solving Eq. (43) recursively in the same manner as the mathematical procedure for solving

the Ornstein-Zernike equation. Thus, the integral equation expressed by Eq. (43) has the

recursive solution given as

P(r) =C
+(r) + ⇢

Z

V

C
+(r13)C

+(r32)dr3

+⇢⇢

Z

V

Z

V

C
+(r13)C

+(r34)C
+(r42)dr3dr4 + · · · . (65)

This equation denotes that the probability that both particle 1 and particle 2 being at

the distance r from particle 1 belong to the same physical cluster can enhance via the

contribution of other particles (3, 4, · · · ). Then, each term on the right-hand side of Eq. (65)

has the magnitude proportional to that probability, while depending on the contribution

of other particular particles (3, 4, · · · ). Although the first term without the contribution of

other particular particles is the exception, the first term being C
+(r) is also proportional

to the probability that both the particle 1 and the particle 2 belong to the same physical

cluster. If the contributions of particles (3, 4, · · · ) distributing around the particle 1 and the
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particle 2 cannot be negligible, it is possible for P(r) to remain not zero even out of the

e↵ective range in which C
+(r) 6= 0.

Each convolution integral on the right hand side of Eq. (65) is positive for the reason

that C+(r) must everywhere be positive because of 0  P(r) (0 < r). In Eq. (57), every

convolution integral must not always be positive for the reason that c(r) is negative for

0 < r/�  1 because g(r) � 1 ⇡ �1 (0 < r/�  1) is satisfied under the condition that no

percolation of physical clusters occurs. The contributions of particles (3, 4, · · · ) distributing

around the particle 1 and the particle 2 to P(r) seems di↵erent from their contributions

to g(r). Despite this, Eq. (57) resulting from the Ornstein-Zernike equation corresponds to

the sum of the contribution from D and the contribution from P , according to Eq. (35).

The contribution of Eq. (65) to g(r), which should be considered as the contribution of the

physical cluster formation to g(r), is hidden in the expression of Eq. (57).

In addition, the pair connectedness P(r), which must satisfy an integral equation given

by Eq. (43), involves contributions of many particles, which are expressed as convolution

integrals found in Eq. (65). This fact means that the pair connectedness P(r) derived from

the use of an approximate C
+(r) involves contributions of many particles, even when the

approximate C
+(r) results from contributions of limited principal particles. Even without

the use of an accurate C
+(r) resulting from the contributions of all particles which should

be considered, making P(r) satisfy the integral equation given by Eq. (43) makes it possible

to succeed in replying to the necessity of considering contributions of many particles.

(f) A simple closure scheme for Eq. (46).

If �u(rij) is positive, every particle pair contributes to the magnitude of C⇤(rij). Even

if �u(rij) is negative, particle pairs contributing to the magnitude of C⇤(rij) exist. The

magnitude of C⇤(rij) results from the contribution of non-nodal diagrams that do not include

paths of all f+-bonds between i and j. Particle pairs contributing to its magnitude include

specific pair particles interacting in a situation where a contribution of the relative kinetic

energy of the pair particles exceeds a contribution of the attractive force between them.

If the MSA and the behavior of P(rij) given by Eq. (62) are considered, the relation given

by Eq. (35) and the PY approximation g
PY(rij) = c

PY(rij)/{1� exp[�u(rij)]} result in

D(rij)� 1 ⇡ �
1

2
�u(rij) for 1 ⌧ rij/�. (66)
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Eq. (66) denotes the behavior of D(r) for 0 < |� �u(r)| ⌧ 1 at large r.

The behavior of Dij(r)� 1 at large r allows Eq. (54) to lead to

C
⇤(rij) ⇡ ��u(rij) for 1 ⌧ rij/�. (67)

This is the long-range contribution to C
⇤(rij). Thus, the use of Eq. (67) allows the behavior

of C⇤(rij) to be approximately given as the sum of the short-range contribution expressed as

C
0⇤(r) and the long- range contribution to C

⇤(rij) according to analogy with the MSA. This

means that an approximation of C⇤(rij) is expressed for either �u(rij) < 0 or �u(rij) > 0 by

C
⇤(rij)= C

0⇤(rij)� �u(rij), (68)

C
0⇤(rij)= 0, for r > �. (69)

The hard core potential does not directly contribute to the interaction between them for

r � �. Thus, Eq. (69) should be justified as an approximate expression as found according

to the MSA.

Eq. (69) demonstrates that C⇤(r) behave in a way similar to c(r), and it decays to zero

as rapidly as ��u(r), which expresses a microscopic feature. Despite this fact, H(r) can

still have a finite value being no zero even out of the e↵ective range in which the microscopic

feature is subject. This can be explained via the solution that is obtained from solving Eq.

(46) recursively. The integral equation expressed by Eq. (46) has the recursive solution given

as

H(r) =C
⇤(r) + ⇢

Z

V

c(r13)C
⇤(r32)dr3 + ⇢⇢

Z

V

Z

V

c(r13)c(r34)C
⇤(r42)dr3dr4 +

+⇢

Z
C

⇤(r13)P(r32)dr3 + ⇢⇢

Z

V

Z

V

c(r13)C
⇤(r34)P(r42)dr3dr4

+⇢⇢⇢

Z

V

Z

V

Z

V

c(r13)c(r34)C
⇤(r45)P(r52)dr3dr4dr5 + · · · . (70)

In Eq. (70), every convolution integral must not always be positive for the reason that C⇤(r)

and c(r) are negative for at least 0 < r/�  1 because H(r) ⇡ �1 (0 < r/�  1) and

g(r) � 1 ⇡ �1 (0 < r/�  1) are satisfied for no percolation of physical clusters. This

denotes that every convolution integral in Eq. (70) cannot always positively contribute to

the magnitude of H(r). However, it is possible that the magnitude of H(r) at large r out of

the e↵ective range, in which C
⇤(r) 6= 0, remains a finite value being no zero, in the case that

convolution integrals which can positively contribute to the magnitude of H(r) are dominant

in Eq. (70).
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